ΟΜΑΔΑ ΕΡΓΑΣΙΑΣ Η1 - Ηλεκτρονικές Υπηρεσίες και Εφαρμογές στη Ναυτιλία: Ισχύουσα Κατάσταση και Προοπτικές

ΣΧΕΔΙΟ ΤΕΛΙΚΟΥ ΠΑΡΑΔΟΤΕΟΥ
Ηλεκτρονικές Υπηρεσίες και Εφαρμογές στη Ναυτιλία: Ισχύουσα Κατάσταση και Προοπτικές
Πίνακας Περιεχομένων

Κεφάλαιο 1...6
1. Εισαγωγή..6
 1.1 Ομάδα Εργασίας Η1: Σκοπός σύστασης και σύνθεση ομάδας........7
 1.2 Μεθοδολογία Υλοποίησης Μελετής9

Κεφάλαιο 2...11

Θεωρητικό υπόβαθρο - Η Ναυτιλιακή Βιομηχανία11
2.1 Γενικά χαρακτηριστικά...11
2.2 Διαχωρισμός σε επιμέρους αγορές..............................11
 2.2.1 Πολυτελείς ναυτιλία ...12
 2.2.1.1 Πολυτελείς ναυτιλία μεταφοράς ηλεκτρικού φορτίου (Bulk carriers) .12
 2.2.1.2 Πολυτελείς ναυτιλία διεθνών πιώσεων (Tankers)13
 Αγορά Γραμμών (Liner Shipping)14
 Πλοία μεταφοράς ηλεκτρικού φορτίου (Bulk carriers)12
 2.2.1.2. Πλοία λειτουργίας, απαιτήσεις σε συστήματα επικοινωνίας και ηλεκτρονικός υπηρεσιών και εφαρμογών.................................15
 2.2.1.3. Απαιτήσεις για ηλεκτρική ανταλλαγή πληροφοριών................15

Κεφάλαιο 3...17

Τεχνολογικές λύσεις για την υποστήριξη των δορυφορικών τηλεπικοινωνιών ..17
3.1 Πλαίσιο κανονισμών σχετικά με τις τηλεπικοινωνίες17
 3.1.1. GMDSS ..17
 3.1.2. Σύστημα Αυτόματης Αναγνώρισης (Automatic Identification System – AIS)20
 3.1.3. Vessel Traffic Services (VTS)21
 3.1.4. Vessel Traffic Management and Information System (VTMIS)21
3.2 Σύγχρονες δορυφορικές τηλεπικοινωνιακές υποδομές και προϊόντα.............22
 3.2.1 Inmarsat ..22
 3.2.2 Άλλες δορυφορικές τηλεπικοινωνιακές υπηρεσίες26
 3.2.2.1 Thuraya ...26
 3.2.2.2 Globalstar ...27
 3.2.2.3 Iridium ..29
 3.2.2.4 VSATs ..30
 3.2.2.5. HELLAS SAT31
3.3 Μελλοντικές εξελίξεις ..32
 3.3.1 Connexion by Boeing ..32
 3.3.2 Inmarsat - Θύρα BGAN32
 3.3.3 Virtual Private Networks – (Σύνδεση πλοίου – γραφείου)33
 3.3.4. GALILEO ..34
3.4 Συμπεράσματα ..35
Ηλεκτρονικές Υπηρεσίες και Εφαρμογές στη Ναυτιλία: Ισχύουσα Κατάσταση και Προοπτικές

Κεφάλαιο 4... 37

Ηλεκτρονικές ναυτιλιακές εφαρμογές και υπηρεσίες .. 37

4.1 Καταγραφοποίηση ηλεκτρονικών εφαρμογών ... 38
4.2 Λογισμικό επικοινωνίας .. 39
4.3. Τεχνική παρακολούθηση και συντήρηση του πλοίου ... 40
 (Planned/Periodic Maintenance System/Ship Performance/Repairs) 40
 Monitoring/ Hull & Machinery Maintenance .. 42
 Δεξιομηνισμός .. 43
4.4. Συστήματα διαχείρισης ποιότητας και ασφάλειας (ISM/ISPS Code) 43
4.5. Παρακολούθηση Αποθεμάτων (Inventory Control) ... 45
4.6. Ηλεκτρονικές προμήθειες / παραγγελίες (εφόδια, ανταλλακτικά) 46
4.7. Εκπαίδευση .. 49
4.8. Ατομική και Εργατική Προστασία .. 49
4.9. Accounting/ MGA/ Payroll / D/A ... 56
4.10. Ηλεκτρονικές ναυτιλιακές αγορές .. 59
4.11. Ψηφιακοί Χάρτες .. 60
4.12. Μελλοντικές εξελίξεις .. 61
 Προτυποποίηση Εγγράφων και Συναλλαγών (Document & Transaction Standardization)..... 61
 Ηχήσεις της Marine Trading Markup Language (MTML) .. 62
4.13. Συμπεράσματα .. 64

Κεφάλαιο 5... 66

Ανάλυση υφιστάμενης κατάστασης στην Ελλάδα .. 66

5.1 Ελληνικές ναυτιλιακές επιχειρήσεις (διαχειρίστριες εταιρείες) .. 66
5.2 Ο ρόλος των τηλεπικοινωνιών στη διαχείριση ποντοπόρων πλοίων 68
5.3 Ο ρόλος των ηλεκτρονικών εφαρμογών .. 70
5.4. Ο ρόλος των ηλεκτρονικών αγορών .. 71
5.5 Οι υφιστάμενες δυσκολίες ως προς την υιοθέτηση ... 73
5.6 Έρευνα Πεδίου ... 74
5.7 Χαρακτηριστικές περιπτώσεις μελέτης στην Ελλάδα ... 82
5.8 Η διεθνής πράκτια στις εταιρείες διαχείρισης ... 84
 5.8.1 Αύξηση μεγεθών μέσω εισαγωγής στις κεφαλαιαγορές .. 84
 5.8.2 Λήψη Υπηρεσιών από Τρίτους (Outsourcing) ... 85
 Case Study: Vships ... 85
 Case Study: Wallem .. 86

Ομάδα Εργασίας Η1 ΣΧΕΔΙΟ ΤΕΛΙΚΟΥ ΠΑΡΑΔΟΤΕΟΥ 4
Ηλεκτρονικές Υπηρεσίες και Εφαρμογές στη Ναυτιλία: Ισχύουσα Κατάσταση και Προοπτικές

Κεφάλαιο 6 ..87

Συμπεράσματα και προτάσεις προς την πολιτεία και τις επιχειρήσεις87

6.1 Συμπεράσματα .. 87
6.2 Προτάσεις προς την Ελληνόκτητη ναυτιλία ... 88
6.3 Προτάσεις προς την Πολιτεία ... 90

ΒΙΒΛΙΟΓΡΑΦΙΑ ..91

ΠΑΡΑΡΤΗΜΑ Α – Πρακτικά Συναντήσεων ...93

1. Πρακτικά 1ης συνάντησης (20/1/05) .. 93
2. Πρακτικά 2ης συνάντησης (17/2/05) ... 98
3. Πρακτικά 3ης συνάντησης (17/3/05) .. 101
4. Πρακτικά 4ης συνάντησης (30/6/05) .. 104

ΠΑΡΑΡΤΗΜΑ Β – Λίστα Συμμετεχόντων ..106

ΠΑΡΑΡΤΗΜΑ Γ – Λίστα Εταιριών ..110

ΠΑΡΑΡΤΗΜΑ Δ – Ερωτηματολόγιο ..119
Κεφάλαιο 1

1. Εισαγωγή

Οι επιχειρηματικές υπηρεσίες στον κλάδο της Ναυτιλίας αλλά και των Συνδυασμένων Μεταφορών, όπως σήμερα διευρυμένα και ενοποιημένα αντιμετωπίζονται, παρέχονται αξιοποιώντας ένα ευρύ φάσμα από επικοινωνιακές και πληροφοριακές τεχνολογίες που εφαρμόζονται με διαφορετική ένταση, επίδραση και δυναμική κατά περίπτωση.

Υπηρεσίες και εφαρμογές όπως η ηλεκτρονική πλοήγηση πλοίων (vessel navigation and passage planning), συστήματα πρόληψης ατυχημάτων (accident prevention), διαχείρισης εκτάκτων περιστάτεκτων (emergency management systems), και γενικότερα υπηρεσίων ασφάλειας και υποστήριξης αποφάσεων που παρέχονται για την υποστήριξη διαχείρισης πλοίου εν πλω, βασίζονται πρωτίστως στις σύγχρονες τηλεπικοινωνιακές υποδομές και προϊόντα που απευθύνονται στην ναυτιλία.

Οι εφαρμογές ηλεκτρονικής ναυτιλίας (e-shipping) που σχετίζονται με την υποστήριξη αλλά και την καινοτομική παροχή κρίσιμων επιχειρηματικών ναυτιλιακών υπηρεσιών όπως οι ηλεκτρονικές ναυλώσεις, οι ηλεκτρονικές προμήθειες και άλλες υπηρεσίες παρεχόμενες από B2B ηλεκτρονικές ναυτιλιακές αγορές, καθώς και οι εφαρμογές διαχείρισης λιμένων παρουσιάζουν σημαντικό βαθμό αξιοποίησης και εξειδίκευσης των γενικών μοντέλων ηλεκτρονικής επιχειρηματικότητας.

Η πολυπλοκότητα στην δραστηριοποίηση των πακτών στις μεταφορές, το μεγάλος εύρος διαθέσιμων τεχνολογικών λύσεων, η εξειδίκευση των ηλεκτρονικών υπηρεσιών, εφαρμογών και τεχνολογικών λύσεων διαμορφώνουν το τοπίο στην παροχή ηλεκτρονικών υπηρεσιών στην ναυτιλία.

Ακόμη και σήμερα, σε συνθήκες υψηλής προσφοράς πληροφοριακών και επικοινωνιακών τεχνολογικών λύσεων, η διαδεδομένη υποστήριξη επιχειρηματικών διαδικασιών στην μεταφορική αλυσίδα και ειδικότερα στους κόμβους, οντότητες που αφορούν στις θαλάσσιες μεταφορές δεν έχει επιτευχθεί.

Η Ελληνική Πολιτεία στα πλαίσια της «Κοινωνίας της Πληροφορίας» και εκτιμώντας τη διεθνή και την ελληνική πραγματικότητα στο χώρο του ηλεκτρονικού επιχειρείν, σχεδιάζει την ενίσχυση πρωτοβουλιών στην κατεύθυνση αυτή. Το συγκεκριμένο έργο, αφορά στην υποστήριξη της διάδοσης και της υιοθέτησης των ηλεκτρονικών υπηρεσιών και εφαρμογών στην Ναυτιλία, και συγκεκριμένα από τις ναυτιλιακές επιχειρήσεις που δραστηριοποιούνται στον τομέα της ποντοπόρου, στοιχειώνεται με τη μεταφορά ψηφικών και εμπορευμάτων.
1.1 Ομάδα Εργασίας Η1: Σκοπός σύστασης και σύνθεση ομάδας

Στα πλαίσια του δουλεία φορολογικού επαγγελματικού πλαίσιο της ΥΠ.ΑΝ., δημιουργήθηκε η Ομάδα Εργασίας Η1 «Ηλεκτρονικές Υπηρεσίες και Εφαρμογές στη Ναυτιλία: Ισχύουσα Κατάσταση και Προοπτικές» εφεξής καλούμενη Η1.

Η Η1 εστίασε στον προσδιορισμό των κρίσιμων παραγόντων που χαρακτηρίζουν την περιοχή των ηλεκτρονικών υπηρεσιών και εφαρμογών καθώς και των δορυφορικών επικοινωνιών τόσο σε όρους ζήτησης όσο και σε όρους προσφοράς.

Πιο συγκεκριμένα, η ομάδα εργασίας Η1 είχε ως κύριο στόχο την ανάλυση των παραγόντων που αφορούν την εξέλιξη στην χρήση ηλεκτρονικών υπηρεσιών και εφαρμογών για τη διαχείριση των ποντοπορών πλοίων της Ελληνόκτητης Ναυτιλίας και προς αυτή την κατεύθυνση έρισε μια σειρά από στόχους-θεματικές περιοχές που εστίασε την δραστηριότητά της.

Συγκεκριμένα, η ομάδα εργασίας είχε ως στόχους:

- Τη μελέτη της υφιστάμενης κατάστασης χρήσης ηλεκτρονικών υπηρεσιών και εφαρμογών στην Ναυτιλία και των δυνατοτήτων περαιτέρω ανάπτυξης αυτών των συστημάτων με βάση τις διεθνείς πρακτικές.
- Τη μελέτη των χαρακτηριστικών των τεχνολογιών λύσεων που προτείνονται στην Ελληνική και Διεθνή αγορά ναυτιλιακής πληροφορικής και τηλεπικοινωνιών.
- Την ανάλυση της αγοράς ηλεκτρονικών ναυτιλιακών υπηρεσιών και εφαρμογών στην Ελλάδα και στο υπόλοιπο κόσμο γενικότερα, τόσο όσον αφορά τα σημερινά μεγέθη όσο και τις μελλοντικές εξελίξεις.
- Την μελέτη των αναγκαίων επιχειρηματικών δραστηριοτήτων και των εξειδικευμένων δράσεων που απαιτούνται καθώς και των μηχανισμών ευρύτερης διάδοσης και προώθησης των τεχνολογιών και εφαρμογών ναυτιλίας.

Η ομάδα εργασίας, προκειμένου να επιτύχει τους παραπάνω στόχους, εστίασε σε δύο βασικές κατευθύνσεις.

Πρώτη κατεύθυνση αποτέλεσε η τηλεπικοινωνιακή αγορά και ειδικώς η υπάρχουσα και αναδυόμενη τηλεπικοινωνιακή υποδομή και η παροχή εμπορικών δορυφορικών επικοινωνιών επικοινωνιών υπηρεσιών στην πολιτικό ναυτιλία.

Δεύτερη κατεύθυνση αποτέλεσαν οι εφαρμογές που αφορούν στη διευκόλυνση κρίσιμων επιχειρηματικών ναυτιλιακών εργασιών και διαδικασιών, όπου συμπεριλαμβανομένων μεταξύ άλλων, πέρα από τις προαναφερθείσες ηλεκτρονικές
Παράλληλα με τους παραπάνω βασικούς στόχους η ομάδα εργασίας επικεντρώθηκε επίσης και στη μελέτη χαρακτηριστικών περιπτώσεων ως προς την ισοδύναμη ηλεκτρονικών εφαρμογών, αφενός σε εταιρείες διαχείρισης πλοίων ελληνικών συμφερόντων και αφετέρου ως προς τη διεθνή πρακτική.

Η δράση της ομάδας συντονίσθηκε από τους κ. Νικήτα Νικητάκο, Αναπληρωτή Καθηγητή του Τμήματος Ναυτιλίας και Επιχειρηματικών Υπηρεσιών, Πανεπιστήμιο Αιγαίου, κ. Δημήτριο Λυρίδη, Επίκουρο Καθηγητή του Τμήματος Ναυτηγνών και Μηχανολόγων Μηχανικών, ΕΜΠ και την κα Μαρία Λάμπρου, Λέκτορα του Τμήματος Ναυτιλίας και Επιχειρηματικών Υπηρεσιών, Πανεπιστήμιο Αιγαίου.

Ως Rapporteurs της ομάδας ορίστηκαν οι κ. Ευάγγελος Στρατάκος, Υποψήφιος Διδάκτορας του Τμήματος Ναυτιλίας και Επιχειρηματικών Υπηρεσιών, Πανεπιστήμιο Αιγαίου, και Κωνσταντίνος Δημητρίου, Υποψήφιος Διδάκτορας του Τμήματος Ναυτηγνών και Μηχανολόγων Μηχανικών, ΕΜΠ.

Τα μέλη της ομάδας ήταν 135 στον αριθμό και εκπροσωπούσαν διαφορετικές ομάδες του κλάδου των θαλάσσιων μεταφορών και της γενικότερης της ελληνικής ναυτιλίας (π.χ. ακαδημαϊκή κοινότητα, παρόχους λύσεων, χρήστες κτλ). Αναλυτικά τα μέλη της ευρύτερης ομάδας προέρχονταν από εταιρείες πληροφορικής-τηλεματικών εφαρμογών, χρήστες-ναυτιλιακές επιχειρήσεις και ακαδημαϊκούς φορείς. Ο ονομαστικός κατάλογος τους βρίσκεται στην ιστοσελίδα της Ομάδας Η1 στο Παράρτημα Β.

Κατά την διάρκεια των εργασιών της Η1 διοργανώθηκαν 4 συναντήσεις με εκπροσώπους από τις τρεις κατηγορίες εμπλεκόμενων φορέων στην ανάπτυξη και χρήση τηλεπικοινωνιακών υπηρεσιών και ηλεκτρονικών εφαρμογών:
1. Χρήστες ιδιωτικούς χρήστες (στελέχη IT ναυτιλιακών εταιρειών)
2. Παρόχους υπηρεσιών λογισμικού (Service and Software providers)
3. Ακαδημαϊκούς και κρατικούς φορείς

Στις συναντήσεις αυτές συμμετείχαν επίσης οι συντονιστές και οι rapporteurs.

Σκοπός των συναντήσεων ήταν η καταγραφή των σχετικών, σημαντικότερων θεμάτων που απασχολούν τις τρεις αυτές κατηγορίες φορέων, η εξαγωγή, διαμόρφωση χρήστων.
κατευθύνσεων και συμπερασμάτων και η κατάθεση προτάσεων στην πολιτεία και στις επιχειρήσεις.

Μετά από την αρχική καταγραφή των θεμάτων και την επεξεργασία τους από την Η1 (μετά από τέσσερις συναντήσεις), δημιουργήθηκαν:

1. Ένα ερωτηματολόγιο, το οποίο απευθύνθηκε σε χρήστες ή δυνητικούς χρήστες, και συγκεκριμένα στις διαχειριστικές εταιρίες πολιτικών πλοίων, οι οποίες αποτελούν και την πλειοψηφία των ναυτιλιακών εταιριών στην Ελλάδα. Η πρόσκληση για τη συμπλήρωση του ερωτηματολογίου αποστάλθηκε στα σχετικά μέλη της Η1 καθώς και σε περίπου 300 διαχειριστικές εταιρείες στην Ελλάδα.

2. Οι agendas και τα πρακτικά των 4 συναντήσεων που προγραμματίστηκαν με τις τρεις κατηγορίες των εμπλεκόμενων φορέων.

3. Ένα τελικό παραδοτέο το οποίο περιέχει την καταγραφή, επεξεργασία και ανάλυση όλων των θεμάτων που απασχόλησαν την ομάδα. Επίσης τμήμα του παραδοτέου αφιερώνεται στην κατάθεση προτάσεων στην πολιτεία και στις επιχειρήσεις. Η επεξεργασία όλων των δεδομένων, αποτέλεσε αντικείμενο ευρύτερης διαβούλευσης με όλα τα μέλη της Η1, με στόχο να διατυπωθούν οι συνολικές θέσεις στην παρούσα έκθεση, πριν από την οριστική διαμόρφωση του παραδοτέου κειμένου. Συνολικά, πραγματοποιήθηκαν 4 συναντήσεις, τα πρακτικά των οποίων περιέχονται στο Παράρτημα Α της παρούσης έκθεσης. Τα συνολικά αποτελέσματα των συναντήσεων αναλύονται στα συμπεράσματα της παρούσης έκθεσης.

1.2 Μεθοδολογία Υλοποίησης Μελέτης
Εκτός από τις επιμέρους συναντήσεις της Ομάδας Εργασίας, όπως αυτές αναφέρθηκαν πιο πάνω και παρουσιάζονται αναλυτικά στα παραρτήματα, οι συντονιστές και οι rapporteurs της ομάδας Η1 έκαναν μία εκτενή επισκόπηση της υφιστάμενης πραγματικότητας που αφορούσε υπηρεσίες και εφαρμογές σχετιζόμενες με τις δύο προαναφερθείσες κατευθύνσεις. Η επισκόπηση αυτή μαζί με τα αποτελέσματα των συναντήσεων της ομάδας οδήγησαν στην δημιουργία της παρούσης έκθεσης, η οποία περιέχει τα ακόλουθα κεφάλαια:

Στο Κεφάλαιο 1 παρουσιάζεται ο σκοπός σύστασης και η σύνθεση της ομάδας εργασίας Η1. Επίσης γίνεται αναφορά στους κύριους στόχους της ομάδας, στα θέματα στα οποία αναφέρθηκε, καθώς επίσης και στο υλικό που παράχθηκε ως αποτέλεσμα συνεργασίας όλων των μελών της ομάδας (π.χ. παραδοτέα, ερωτηματολόγιο). Στο Κεφάλαιο 2 παρουσιάζεται το θεωρητικό υπόβαθρο σχετικά με τη Ναυτιλιακή Βιομηχανία, τα γενικά χαρακτηριστικά της, ο διαχωρισμός της σε επιμέρους αγορές, όπως είναι η πολυπτόρος ναυτιλία και οι υποκατηγορίες της: η ναυτιλία μεταφοράς χύδην φορτίων (Bulk shipping) – η ναυτιλία γραμμών (Liner shipping) καθώς και το
Ηλεκτρονικές Υπηρεσίες και Εφαρμογές στη Ναυτιλία: Ισχύουσα Κατάσταση και Προοπτικές

πλαίσιο λειτουργίας και οι απαιτήσεις σε συστήματα επικοινωνίας και ηλεκτρονικών υπηρεσιών και εφαρμογών.

Στο Κεφάλαιο 3 παρουσιάζονται οι σύγχρονες δορυφορικές τηλεπικοινωνιακές υποδομές και προϊόντα υποστήριξης των τηλεπικοινωνιών στη ναυτιλία. Πιο συγκεκριμένα το κεφάλαιο χωρίζεται σε 2 υποενότητες: στις υφιστάμενες τεχνολογίες και στις επερχόμενες εξελίξεις (BGAN, Connexion).

Στο Κεφάλαιο 4 παρουσιάζονται οι ηλεκτρονικές εφαρμογές υποστήριξης των ναυτιλιακών υπηρεσιών. Γίνεται μια κατηγοριοποίηση των εφαρμογών και μια εκτενής αναφορά στις λειτουργίες και τις ανάγκες που καλύπτουν, καθώς επίσης αναφορά στις μελλοντικές εξελίξεις.

Στο Κεφάλαιο 5 παρουσιάζεται η υφιστάμενη κατάσταση στην Ελλάδα. Οι ελληνικές ναυτιλιακές επιχειρήσεις (διαχειριστικές εταιρείες) και ο ρόλος των τηλεπικοινωνιών, των ηλεκτρονικών εφαρμογών και των ηλεκτρονικών αγορών. Γίνεται αναφορά στις υφιστάμενες δυσκολίες ως προς την υιοθέτηση, καθώς επίσης παρουσιάζονται και οι αποτελέσματα της έρευνας πεδίου που πραγματοποιήθηκε, χαρακτηριστικές περιπτώσεις μελέτης στην Ελλάδα, καθώς και η διεθνής πρακτική στις εταιρείες διαχείρισης.

Τέλος στο Κεφάλαιο 6 παρουσιάζονται οι προτάσεις της ομάδας προς τις εταιρείες και τα επιχειρηματικά σχήματα καθώς επίσης και οι προτάσεις προς την πολιτεία και τα τελικά συμπεράσματα. Επίσης υπάρχουν και τα Παραρτήματα A, B, G και Δ όπου παρατίθενται τα πρακτικά των συναντήσεων, η λίστα με τους συμμετέχοντες, η λίστα με τις εταιρείες παροχής τηλεπικοινωνιακών λύσεων και λογισμικού και το ερωτηματολόγιο αντίστοιχα.
Κεφάλαιο 2
Θεωρητικό υπόβαθρο - Η Ναυτιλιακή Βιομηχανία

2.1 Γενικά χαρακτηριστικά

Η Ναυτιλία (ή αλλιώς ναυτιλιακή βιομηχανία) ασχολείται με τη μεταφορά μέσω θαλάσσης, προϊόντων και προσώπων ανά τον κόσμο και αποτελείται από ένα σύνολο από ξεχωριστές αγορές που ως τόσο, παρότι κάποιος μπορεί να τις διαχωρίσει, δεν μπορεί να παραγνωρίσει τη σημαντική αλληλεπίδραση και αλληλεξάρτησή τους. Τα σημαντικότερα στοιχεία της αποτελούν ο παγκόσμιος χαρακτήρας, η εξωστρέφεια και ο ισχυρός ανταγωνισμός, τα οποία καθιστούν καθοριστική την επίδραση των τεχνολογικών εξελίξεων ως προς τα συστήματα επικοινωνίας, ενημέρωσης και ηλεκτρονικών υπηρεσιών.

2.2 Διαχωρισμός σε επιμέρους αγορές

Ο διαχωρισμός της ναυτιλιακής βιομηχανίας σε επιμέρους αγορές και ο εντοπισμός των ειδικότερων χαρακτηριστικών κάθε αγοράς, γίνεται με βάση το μέγεθος και το είδος του φορτίου, τη γεωγραφική περιοχή στην οποία γίνεται η διακίνηση, τις απαιτήσεις των θαλάσσιων διαδρομών και τον τύπο του πλοίου.

Μια από τις βασικές διακρίσεις της ναυτιλιακής βιομηχανίας η οποία στηρίζεται στο μέγεθος του φορτίου είναι η ναυτιλία γραμμών (liner shipping) και η ναυτιλία μεταφοράς χύδην φορτίων (bulk shipping).

Σχετικά με τις απαιτήσεις των θαλάσσιων διαδρομών, η ναυτιλιακή βιομηχανία διακρίνεται στην πολυπολιτική και στη ναυτιλία μικρότερων αποστάσεων (short sea, coastal and inland waterways shipping).

Με βάση το είδος του φορτίου η ναυτιλιακή βιομηχανία διαχωρίζεται σε δύο θεμελιώδεις κατηγορίες την επιβατηγό ναυτιλία, η οποία αφορά κυρίως στην ακτοπλοΐα και η οποία εξυπηρετείται από επιβατηγό/οχηματαγωγό πλοίο και τις θαλάσσιες μεταφορές πρώτων υλών ημικατεργασμένων και τελικών προϊόντων. Η δεύτερη κατηγορία μπορεί να επιμεριστεί με βάση τον τύπο του πλοίου σε τρεις μεγάλες κατηγορίες στην αγορά των δεξαμενοπλοίων (Tanker, Chemical, LPG/LNG Market), των πλοίων χύδην ξηρού φορτίου (Bulk Carrier Market) και των πλοίων εμπορευματοκιβωτίων (Containership Market) οι οποίες με τη σειρά τους διακρίνονται σε άλλες ειδικότερες κατηγορίες ανάλογα με το μέγεθος και τα ιδιαίτερα χαρακτηριστικά των πλοίων.

Κάθε μια από τις παραπάνω κατηγορίες/αγορές παρουσιάζει ειδικότερα χαρακτηριστικά, τα οποία διαμορφώνουν διαφορετικό πλαίσιο λειτουργίας και στρατηγικής για την επιχείρηση που θα δραστηριοποιηθεί σε κάποια από αυτές, π.χ. η ναυτιλία γραμμών (liner shipping) παρέχει ένα τελείως διαφορετικό τύπο υπηρεσιών,
2.2.1 Ποντοπόρος ναυτιλία

2.2.1.1 Υποκατηγορίες ποντοπόρου ναυτιλίας

A. Bulk shipping – Liner shipping
Ο διαχωρισμός της παγκόσμιας ναυτιλιακής βιομηχανίας σε αγορά χύδην φορτίων (Bulk Shipping) και αγορά γραμμών (Liner Shipping) συνδέεται με το μέγεθος της κάθε ανεξάρτητης παρτίδας φορτίου προς μεταφορά. Ειδικότερα, ο εν λόγω διαχωρισμός στηρίζεται στη διάκριση των φορτίων σε χύδην (bulk cargo) και γενικό (general cargo). Ως χύδην φορτία χαρακτηρίζονται τα φορτία τα οποία από μόνα τους μπορούν να γεμίσουν τη χωρητικότητα ενός πλοίου ή ενός αμπαριού και μεταφέρονται από πλοία που δεν ακολουθούν τακτικά δρομολόγια αλλά η απασχόληση τους ποικίλει ανάλογα με τις ευκαιρίες και τις προσταγές της αγοράς. Ενώ ως γενικά φορτία ορίζονται τα φορτία τα οποία είναι μικρότεροι μεγέθους και δεν μπορούν από μόνα τους να συμπληρώσουν τη χωρητικότητα ενός πλοίου ή ενός αμπαριού με συνέπεια να μεταφέρονται από κοινού με άλλα φορτία. Τα γενικού τύπου φορτία μεταφέρονται σχεδόν αποκλειστικά από τα πλοία γραμμών (Liner shipping).

B. Bulk Carrier – Tanker – Containership
Η κατηγοριοποίηση των θαλάσσιων μεταφορών πρώτων υλών ημικατεργασμένων και τελικών προϊόντων με βάση τον τύπο των πλοίων περιλαμβάνει τα πλοία μεταφοράς ξηρού φορτίου (Bulk carriers), τα δεξαμενόπλοια (Tankers) και τα πλοία μεταφοράς εμπορευματοκιβωτίων (Containerships).

Πλοία μεταφοράς ξηρού φορτίου (Bulk carriers)
Πρόκειται για πλοία τα οποία απασχολούνται στη μεταφορά χύδην φορτίων, όπως ο ανθράκας, τα σιτηρά, το σιδηρομετάλλευμα, ο χάλυβας, το τσιμέντο, τα φωσφάτα και τα λιπάσματα και το μέγεθος τους είναι από 18.000 έως 200.000 τόνους. Μολονότι μια διάκριση σε κατηγορίες ανάλογα με το μέγεθος των πλοίων δεν μπορεί να είναι πολύ αυστηρή, ωστόσο υπάρχουν συγκεκριμένες διαφοροποιήσεις που χρησιμοποιούνται για τις ανάγκες της αγοράς.
Ειδικότερα υπάρχει η κατηγορία των 18.000 – 35.000 τόνων που ονομάζονται "Handysize bulkers". Τα τελευταία χρόνια αναπτύχθηκαν σημαντικά ανάμεσα στις
Η ηλεκτρονικής Υπηρεσίες και Εφαρμογές στη Ναυτιλία: Ισχύουσα Κατάσταση και Προοπτικές

tυπικές κατηγορίες των Handysize και των Panamax, η κατηγορία των 35.000 – 50.000 dwt, τα “Handymax bulkers”, και των 50.000 – 60.000 dwt τα “Ultra Handymax bulkers”. Η κατηγορία των “Panamax bulkers” περιλαμβάνει πλοία 50.000 – 60.000 tόνων των οποίων οι διαστάσεις τους σε πλάτος και βάθιση σε έμφυρτη κατάσταση πλησιάζει τις μέγιστες επιπλέον διαστάσεις για διαπέλας από το κανάλι του Παναμά και απασχολούνται στη μεταφορά σιτηρών, άνθρακα και σιδηρομετάλλευμα. Τα μεγαλύτερα πλοία στην κατηγορία των bulk carriers είναι τα “Capesize bulkers” τα οποία μεταφέρουν άνθρακα και σιδηρομετάλλευμα, ενώ τα μεγέθη τους ξεκινούν από 80.000 tόνους και ξεπερνούν τους 200.000 tόνους.

Σήμερα ο αριθμός των πλοίων που απασχολούνται με τη μεταφορά χύδην φορτίου ανέρχεται σε 5.941, ενώ μέχρι και το 2006 αναμένεται να παραδοθούν 530 πλοία.

Δεξαμενόπλοια (Tankers)

Από την δεκαετία του ’50 μέχρι σήμερα η αγορά δεξαμενόπλοιων διαιρείται σε δυο τομείς, του αργού ή ακάθαρτου πετρελαίου (crude ή dirty oil) και των προϊόντων πετρελαίου (oil products). Η δεξαμενόπλοια ξεκινούν από 10.000 tόνους και, με την τάση για αύξηση των μεγεθών των πλοίων από τις arχές της δεκαετίας του 80’ περίπου, ανέρχονται σήμερα μέχρι και 440.000 tόνους.

Τα μικρότερα δεξαμενόπλοια, χωρητικότητας 10.000 – 50.000 tόνων, είναι γνωστά ως “Handysize” λόγω του μικρού μεγέθους τους ή ως “Product Carriers” λόγω του γεγονότος ότι μεταφέρουν κατά κανόνα κατεργασμένα ή ημι-κατεργασμένα προϊόντα πετρελαίου. Τα μεσαία μεγέθη διακρίνονται στα “Panamax”, 50.000 – 80.000 tόνων, τα “Aframax”, 80.000 – 120.000 tόνων και στα “Suezmax” χωρητικότητας 120.000 – 200.000 tόνων. Τα πλοία μεσαίου μεγέθους απασχολούνται tόσο στη μεταφορά ακάθαρτου πετρελαίου όσο και προϊόντων πετρελαίου. Τα μεγαλύτερα, μεγέθη δεξαμενόπλοια κατηγοροποιούνται στα “Very Large Crude Carriers” (VLCC) χωρητικότητας 200.000 – 320.000 tόνων και στα “Ultra Large Crude Carriers” (ULCC), το μέγεθος των οποίων είναι 320.000 tόνους και άνω.

Σήμερα ο αριθμός των δεξαμενόπλοιων ανέρχεται σε 3.843 (DWT 330εκ.), ενώ μέχρι και το 2006 αναμένεται να παραδοθούν 654 πλοία.

Στην αγορά δεξαμενόπλοιων συγκαταλέγονται τα πλοία μεταφοράς υγρών χημικών προϊόντων (chemical tankers) χωρητικότητας μεταξύ 10.000 – 50.000 tόνων και τα δεξαμενόπλοια μεταφοράς υγραερίου. Τα πλοία αυτά ανάλογα με τον τύπο φορτίου που μεταφέρουν διακρίνονται στα πλοία μεταφοράς υγροποιημένου πετρελαϊκού αερίου LPG (Liquefied Petroleum Gas) και στα πλοία μεταφοράς υγροποιημένου φυσικού αερίου LNG (Liquefied Natural Gas).
Τα πλοία που απασχολούνται στη συγκεκριμένη αγορά μεταφέρουν γενικά φορτία (general cargo) και πραγματοποιούν τακτικές υπηρεσίες μεταφοράς ανάμεσα σε καθορισμένα λιμάνια και συνήθως με συγκεκριμένο χρονοδιάγραμμα αναχωρήσεων.

Υπάρχουν πέντε κύριοι τύποι πλοίων που δραστηριοποιούνται στη μεταφορά γενικών φορτίων, τα „cellular container ships“, τα οποία μεταφέρουν αποκλειστικά εμπορευματοκιβώτια, τα „multi-purpose vessels“ τα οποία έχουν υψηλή ταχύτητα, ικανοποιητική χωρητικότητα εμπορευματοκιβωτίων, ικανότητα μεταφοράς μονοδοτοιμένων προϊόντων (π.χ. προϊόντα ζωολογικού) και έχουν διπλά καταστρώματα και ανοικτά αμπόρια. Οι άλλοι τρεις τύποι είναι τα „tweendeckers“, πλοία με οικονομική ταχύτητα, διπλά καταστρώματα, στενά αμπόρια, εξοπλισμό για χειρισμό του φορτίου και περιορισμένη ικανότητα μεταφοράς containers, τα „general cargo liners“, πλοία που έχουν υψηλή ταχύτητα, πολλαπλά καταστρώματα, εκτεταμένο εξοπλισμό χειρισμού των φορτίων αλλά μικρή ικανότητα μεταφοράς εμπορευματοκιβωτίων και τα “Ro-Ro”, πλοία πολλαπλών καταστρωμάτων σχεδιασμένα να μεταφέρουν φορτίο πάνω σε τροχοφόρα οχήματα και για μεγάλες θαλάσσιες αποστάσεις.

Πλοία μεταφοράς εμπορευματοκιβωτίων (Container Vessels)

Η αγορά των πλοίων εμπορευματοκιβωτίων είναι κυρίως οι γραμμές που συνδέουν τις υψηλά βιομηχανοποιημένες περιοχές της υφηλίου, οι οποίες διαθέτουν εξελιγμένα συστήματα μεταφοράς στην ενδοχώρα, τόσο στον τόπο εισαγωγής όσο και στον τόπο εξαγωγής του φορτίου. Η αγορά των containerships απαιτεί μεγάλες επενδύσεις κεφαλαίου σε ειδικά εξοπλισμένα πλοία και σε εγκαταστάσεις και εξοπλισμό των σταθμών εμπορευματοκιβωτίων στα λιμάνια και στην ενδοχώρα.

Τα containerships μπορούν να κατηγοροποιηθούν σε τρεις βασικές κατηγορίες. Η πρώτη κατηγορία είναι τα ‚fully cellular container ships‘, πλοία αποκλειστικής μεταφοράς εμπορευματοκιβωτίων τα οποία φορτώνονται με τη βοήθεια ειδικών οδηγιών μέσα στα αμπόρια. Η δεύτερη κατηγορία είναι τα ‚cellular ships with Ro/Ro capability‘ τα οποία έχουν τη δυνατότητα μεταφοράς τροχοφόρων φορτίων αλλά και εμπορευματοκιβωτίων, ενώ η τρίτη κατηγορία περιλαμβάνει τα ‚multi-purpose container ships‘, τα οποία μπορούν να μεταφέρουν εμπορευματοκιβώτια ή γενικό φορτίο στο ένα σκέλος μιας διαδρομής και άλλες μορφές φορτίου, κυρίως χύδη ή τροχοφόρα κατά την επιτροφή. Το μέγεθος ενός πλοίου εμπορευματοκιβωτίων μετράται σε TEU (Twenty-Feet Equivalent Units), δηλαδή εμπορευματοκιβώτια 20 ποδών.
2.2.1.2. Πλαίσιο λειτουργίας, απαιτήσεις σε συστήματα επικοινωνίας και ηλεκτρονικών υπηρεσιών και εφαρμογών

Η επικοινωνία στον τομέα της ναυτιλίας αυτοματοποιήθηκε κατά τις δεκαετίες των 50’ και 60’. Μέσω των τέλες μεταδίδονταν οι απαιτούμενες πληροφορίες. Τη δεκαετία του 70’ η ανάπτυξη στον τομέα της ηλεκτρονικής επικοινωνίας και των συστημάτων επέτρεπε την πρόσβαση σε βάσεις δεδομένων και σε προγράμματα εκτήμησης ταξιδίων (voyage estimation). Τη δεκαετία των 80’ αναπτύχθηκαν ηλεκτρονικά δίκτυα με συνέπεια ακόμη και οι μικρότερες εταιρείες να μπορούν να έχουν πρόσβαση στις προαναφερόμενες υπηρεσίες με χαμηλό κόστος. Με την πάροδο των ετών και την αλματώδη βελτίωση των ηλεκτρονικών συστημάτων επικοινωνίας άρχισε να αντιμετωπίζεται και το πρόβλημα της διαφοράς ώρας μεταξύ των συναλλασσομένων. Σε ένα σύστημα ηλεκτρονικών υπηρεσιών και εφαρμογών το μεγαλύτερο κόστος είναι το ανθρώπινο δυναμικό και το hardware των συστημάτων. Έτσι ενώ τη δεκαετία του 1970 το εργατικό κόστος ήταν χαμηλό σε σχέση με το υψηλό κόστος των επικοινωνιών, σήμερα τα πράγματα έχουν αντιστραφεί με συνέπεια το κόστος των επικοινωνιών να είναι σαφώς χαμηλότερο από αυτό του εξειδικευμένου πλέον ανθρώπινου δυναμικού.

2.2.1.3. Απαιτήσεις για ηλεκτρονική ανταλλαγή πληροφοριών

Οι σημαντικές διαφοροποιήσεις μεταξύ των επιμέρους ναυτιλιακών αγορών οδηγούν αντίστοιχα στη διαμόρφωση των εξωχωριστών απαιτήσεων σε συστήματα τηλεπικοινωνιών και ηλεκτρονικών υπηρεσιών.

Πιο συγκεκριμένα, τα πλοία που δραστηριοποιούνται στην αγορά των χύδην φορτίων (Bulk Shipping) κατά κύριο λόγο εκτελούν μικρό αριθμό ταξιδίων κάθε χρόνο μεταφέροντας ένα είδος φορτίου ανά ταξίδι. Επομένως το κέρδος του πλοίου ανά ταξίδι παίζει καθοριστικό ρόλο στο ετήσιο εισόδημα του πλοίου καθώς ένας χαμηλός ναύλος θα διαρκέσει για αρκετό διάστημα μέσα στο χρονικό πλαίσιο ενός έτους. Για το λόγο αυτό έχει μεγάλη σημασία η διαπραγμάτευση των ναύλων για κάθε ταξίδι και πολύ περισσότερο το σύστημα που παρέχει την πληροφόρηση και διευκολύνει την πραγματοποίηση της διαπραγμάτευσης.

Τα πλοία μεταφοράς χύδην ξηρού φορτίου πραγματοποιούν ως επί το πλείστον περιορισμένο αριθμό συναλλαγών κατά τη διάρκεια της δραστηριότητας τους, καθώς ολοκληρώνουν περίπου 6-10 ταξίδια το χρόνο, μεταφέροντας ένα φορτίο ανά ταξίδι. Αυτό σημαίνει κατ’ επέκταση και μικρότερες ανάγκες ανταλλαγής πληροφοριών.

Στην περίπτωση των δεξαμενόπλοιων, παρα το γεγονός ότι πραγματοποιούν αντίστοιχο αριθμό ταξιδίων με τα πλοία ξηρού φορτίου, οι ανάγκες τους ως προς την ανταλλαγή πληροφοριών αυξάνονται σημαντικά, κυρίως λόγω των ασιατικών ταξιδιών λειτουργίας που οφείλονται εν μέρει στις ενδεχόμενες περιβαλλοντικές επιπτώσεις και
Ηλεκτρονικές Υπηρεσίες και Εφαρμογές στη Ναυτιλία: Ισχύουσα Κατάσταση και Προοπτικές

τους κανονισμούς λειτουργίας που επιβάλλονται από τον Διεθνή Ναυτιλιακό Οργανισμό, καθώς και στην τεχνική παρακολούθηση του πλοίου από το γραφείο.

Στην αγορά γραμμών (Liner Shipping) τα πλοία πραγματοποιούν πολύ περισσότερα ταξίδια σε ετήσια βάση με συνέπεια η διαδικασία, από την οργάνωσή των ταξιδιών μέχρι την ολοκλήρωσή τους, να πραγματοποιείται τόσες πολλές φορές και να περιλαμβάνει τόσα πολλά στάδια, ώστε το κόστος παρακολούθησής της να είναι πολύ υψηλό. Σε γενικά πλαίσια η διαδικασία του ταξιδιού στη ναυτιλία γραμμών περιλαμβάνει την οργάνωση, τον συντονισμό των διαδρομών, καθώς επίσης την παρακολούθηση των πολλαπλών φορτώσεων και εκφορτώσεων των φορτίων, την έκδοση των απαραίτητων εγγράφων και πιστοποιητικών, την παρακολούθηση της καλής λειτουργίας του εξοπλισμού φόρτωσης/εκφόρτωσης, την έγκαιρη επιβεβαίωση της παραλαβής και παράδοσης των εμπορευμάτων και τη λογιστική και γενικότερη παρακολούθηση των πολλαπλών ταξιδιών.

Πρέπει να λάβουμε υπόψιν ότι οι μεταφορές πλέον είναι συνδυασμένες και εξυπηρετούν τους σκοπούς της εφοδιαστικής αλυσίδας, συνεπώς το πλοίο που αποτελεί μέρος της, πρέπει να συντονιστεί με τα υπόλοιπα μεταφορικά μέσα που συντελούν στην άφιξη των προϊόντων στον τελικό προορισμό τους. Τα πλοία μεταφοράς εμπορευτοκιβωτίων (containers) που αποτελούν κύριο τμήμα της εφοδιαστικής αλυσίδας έχουν τις υψηλότερες απαιτήσεις για ηλεκτρονική ανταλλαγή πληροφοριών.
Κεφάλαιο 3.
Τεχνολογικές λύσεις για την υποστήριξη των δορυφορικών τηλεπικοινωνιών

Λαμβάνοντας υπόψη τους στόχους της ομάδας εργασίας, όπως παρουσιάστηκαν στην εισαγωγή, πρώτη κατεύθυνση αποτελεί η τηλεπικοινωνιακή αγορά, και ειδικώς η παροχή εμπορικών επικοινωνιακών υπηρεσιών αναδιοργάνωσης τεχνολογιών στην πολιτικό μας ναυτιλία. Το συγκεκριμένο κεφάλαιο παρουσιάζει την απαίτηση της τηλεπικοινωνιακής υποδομής του πλοίου όπως αυτή καθορίζεται από τη συνθήκη SOLAS και στη συνέχεια την επισκόπηση της πρότασης κατάστασης της επικοινωνίας προς την πολιτικό μας ναυτιλία, με έμφαση στην δορυφορική συστήματα, καθώς αυτά καλύπτουν κατά κύριο λόγο τις ανάγκες της πολιτικό μας ναυτιλίας. Επιπλέον, θα γίνει αναφορά στους κύριους πιάκτες και, εφόσον είναι διαθέσιμο, στο κόστος εγκατάστασης και χρήσης το οποίο βρίσκεται σε συνεχή μείωση.

3.1 Πλαίσιο κανονισμών σχετικά με τις τηλεπικοινωνίες

3.1.1. GMDSS

Το εν λόγω σύστημα έχει σαν σκοπό να εισδοποιεί για βοήθεια όταν το πλοίο βρεθεί σε κατάσταση κινδύνου, να εκπέμπει όλες τις σχετικές πληροφορίες που αφορούν στην ασφαλή ναυσιπλοΐα και να εξυπηρετεί τις γενικές ανάγκες για επικοινωνία, μεταξύ πλοίου-ξηράς, αλλά και μεταξύ δύο πλοίων.
Το σύστημα GMDSS, βασισμένο στο συνδυασμό δορυφορικών και επίγειων
tηλεπικοινωνιακών υπηρεσιών, αποτελείται από τα παρακάτω επιμέρους συστήματα:

1. Πομποδέκτες VHF/HH/MF, οι οποίοι είναι εξοπλισμένοι με DSC (Digital Selective Calling). Το DSC καταργεί την ανάγκη για συνεχή παρακολούθηση των
ραδιοσυχνοτήτων από το προσωπικό βάρδιας.

2. Το COSPAS-SARSAT αποτελεί ένα διεθνές σύστημα έρευνας και διάσωσης μέσω
dορυφόρου, το οποίο δημιουργήθηκε από τον Καναδά, την Γαλλία, τις Η.Π.Α και τη
Ρωσία. Το σύστημα Cospas-Sarsat περιλαμβάνει τη συσκευή EPIRB, η οποία
συνεργάζεται με τους δορυφόρους LEOSAR/GEOSAR και τους αντίστοιχους επίγειους
σταθμούς. Τα EPIRBs ενεργοποιούνται αυτόματα και έχουν σχεδιαστεί να μεταδίδουν
στη συχνότητα 406 MHz σε ένα κέντρο συντονισμού της διάσωσης την θαυμάτη του
πλοίου σε κίνδυνο καθώς και την ακριβή του θέση.

3. Το NAVTEX είναι μια αυτοματοποιημένη διεθνής υπηρεσία μετάδοσης μηνυμάτων με
προειδοποιητικό περιεχόμενο σχετικά με τις μετεωρολογικές προγνώσεις και την
ασφαλή ναυτιλία.

4. Το δορυφορικό σύστημα Inmarsat, το οποίο αποτελείται από ένα σύνολο
dιαφορετικών δορυφορικών υπηρεσιών, κάθε μία εκ των οποίων απαιτεί εγκατάσταση
αντίστοιχων πομποδέκτη επί του πλοίου για την επικοινωνία με το δίκτυο των
γεωστατικών πλοίου, αντίστοιχων επίγειων σταθμούς, της οποίας και ονομάζεται Mobile Earth Station (MES). Οι
δορυφόροι της Inmarsat καλύπτουν τη συνολική επιφάνεια των ωκεανών από πλάτος
70ο Βόρεια ως 70ο Νότια. Αυτό τους καθιστά συμβατούς με τη κατά GMDSS θαλάσσια
περιοχή A3.

Το σύστημα υποστηρίζεται από την τρίτη γενιά δορυφόρων της Inmarsat, ενώ ο πρώτος
dορυφόρος της τέταρτης γενιάς είναι ήδη σε τροχιά. Με την έναρξη λειτουργίας του θα
είναι σε θέση να προσφέρει ευρυζωνικές υπηρεσίες συμβατές με 3G στους χρήστες.

Τα διαθέσιμα συστήματα του Inmarsat σε σχέση με το GMDSS είναι τα εξής:

Inmarsat B

Πρόκειται για τον ψηφιακό διάδοχο του Inmarsat-A. Υποστηρίζει μετάδοση φωνής,
πληροφοριών, fax και telex με υψηλό όμως κόστος. Η ταχύτητα μετάδοσης ανέρχεται στα
9,6 kbit/s πληροφορίας στην κανονική του μορφή και 64 kbit/s μέσω της επιλογής
HSD, εφόσον υποστηρίζεται από τα εγκατεστημένα τερματικά. Το κόστος του τερματικού
Ηλεκτρονικές Υπηρεσίες και Εφαρμογές στη Ναυτιλία: Ισχύουσα Κατάσταση και Προοπτικές

(MES) υπερβαίνει τις USD 20,000, ενώ οι χρεώσεις κυμαίνονται μεταξύ USD 4-10 ανά λεπτό ανάλογα με την ταχύτητα.

Inmarsat C

Το σύστημα Inmarsat-C αποτελεί το ψηφιακό σύστημα αποθήκευσης και προώθησης μηνυμάτων, καθώς επίσης και εφαρμογών τηλεμετρίας και ανίχνευσης (tracking) με σχετικά χαμηλό κόστος και δεν υποστηρίζει μετάδοση φωνής. Η ταχύτητα μετάδοσης ανέρχεται σε 600 bits/s και το μέγιστο μήνυμα στα 32kBytes. Παρέχει υπηρεσίες messaging με πρόσβαση σε δίκτυα Telex / PSTN (για αποστολή fax) /PSDN (για αποστολή δεδομένων) καθώς και ηλεκτρονικού ταχυδρομείου (e-mail). Το σύστημα έχει δυνατότητα ταυτόχρονης αποστολής μηνύματος σε ομάδα παραληπτών μέσω Enhanced Group Calls (EGC).

Το Inmarsat C είναι το οικονομικότερο δορυφορικό σύστημα τηλεπικοινωνιών, το οποίο είναι ταυτόχρονα συμβατό με τις απαιτήσεις του GMDSS. Τα τερματικά είναι απλά στη χρήση, μικρού μεγέθους και μπορούν να τοποθετηθούν σε οποιοδήποτε σκάφος.

Inmarsat-E

Πρόκειται για σύστημα EPIRB συμβατό με τις απαιτήσεις GMDSS, το οποίο χρησιμοποιεί τους δορυφόρους Inmarsat, αντί αυτούς του συστήματος COSPAS-SARSAT. Ο συνδυασμός της γεωστατικής τροχιάς των δορυφόρων με την εγκατάσταση δέκτη GPS στο σύστημα Inmarsat E εξασφαλίζει μεγάλη ακρίβεια στον προσδιορισμό του στίγματος και ελάχιστη καθυστέρηση στην προώθηση των στοιχείων, προκειμένου να ενεργοποιηθεί ο μηχανισμός έρευνας και διάσωσης.
Το εν λόγω σύστημα κοστίζει περίπου το διπλάσιο σε σχέση με το COSPAS-SARSAT EPIRB.

5. Search and Rescue Radar Transponders (SARTs)

Πρόκειται για συσκευές που χρησιμοποιούνται για τον εντοπισμό σωστικών λέμβων ή πλοίων σε κίνδυνο δημιουργώντας σήματα στα radar σε απόσταση 10 ναυτικών μιλίων περίπου.

6. HF Ραδιοτηλέφωνο

Αλλά δεν κάλυψη των πόλων μέσω των γεωστατικών δορυφόρων της Inmarsat, είναι απαιτούμενο σύμφωνα με τη SOLAS για τα πλοία, τα οποία εισέρχονται σε αυτές τις περιοχές.
Οι θαλάσσιες περιοχές σύμφωνα με το GMDSS χωρίζονται σε υποκατηγορίες αναλόγως της απόστασής τους από την ζηρά. Κάθε πλοίο θα πρέπει προσαρμόζεται στις σχετικές απαιτήσεις του GMDSS, αναλόγως των περιοχών που ταξιδεύει. Οι περιοχές αυτές έχουν ως εξής:

1. Περιοχές Α1 : Εντός κάλυψης VHF/DSC. Πλοία, τα οποία ταξιδεύουν στην Α1 περιοχή, θα πρέπει να φέρουν το σύστημα EPIRB, τον δέκτη NAVTEX, τον δέκτη Inmarsat C (εφόσον ταξιδεύουν σε σημεία που δεν καλύπτονται από το NAVTEX), ραδιοτηλέφωνο DSC-VHF και μια συσκευή SART.
2. Περιοχές Α2 : Εντός κάλυψης MF/DSC. Πλοία, τα οποία ταξιδεύουν στην Α2 περιοχή, θα πρέπει να φέρουν επιπλέον των ανωτέρω και ραδιοτηλέφωνο DSC-MF.
3. Περιοχές Α3 : Εντός κάλυψης των γεωστατικών δορυφόρων INMARSAT. Πλοία, τα οποία ταξιδεύουν στην Α3 περιοχή, θα πρέπει να φέρουν επιπλέον των ανωτέρω στις Α1 και Α2 και εξοπλισμό Inmarsat B ή C ή ραδιοτηλέφωνο DSC-HF.
4. Περιοχές Α4 : Εκτός κάλυψης INMARSAT (πολικές περιοχές). Πλοία, τα οποία ταξιδεύουν στην Α3 περιοχή, θα πρέπει να φέρουν επιπλέον των ανωτέρω στις Α2 και Α3 και ραδιοτηλέφωνο DSC-HF.

3.1.2. Σύστημα Αυτόματης Αναγνώρισης (Automatic Identification System – AIS)
Στα πλαίσια της SOLAS, είναι υποχρεωτική η εγκατάσταση του συστήματος AIS από 1/1/2005. Το AIS έχει σαν σκοπό την βελτίωση της ασφάλειας της ναυσιπλοίας, τον έλεγχο της θαλάσσιας κυκλοφορίας (VTMS), στην αποτελεσματικότερη έρευνα και διάσωση και την προστασία του θαλάσσιου περιβάλλοντος, και βασίζεται στην αναγνώριση και παρακολούθηση των πλοίων είτε από άλλα πλοία είτε από σταθμούς ξηράς μέσω της τεχνολογίας “Self Organizing Time Division Multiple Access”. Τα πλοία στα οποία είναι εγκατεστημένοι εκτέμπουρο περιοδικά πληροφορίες όπως: την θέση, την πορεία, την ταχύτητα και το φορτίο τους.
Οι πληροφορίες που εκτέμπουνται κατηγοριοποιούνται ως εξής:
• Στις στατικές πληροφορίες περιλαμβάνονται ο αριθμός IMO, το Διεθνές διακριτικό σήμα και όνομα, το μήκος και το κοίλο, ο τύπος πλοίου, και η θέση κεραίας συσκευής παροχής θέσης πλοίου.
• Στις δυναμικές πληροφορίες περιλαμβάνονται η θέση του πλοίου, η ώρα UTC, η πορεία, η κατάσταση πλεύσης, ο ρυθμός στροφής.
• Στις πληροφορίες ναυσιπλοίας περιλαμβάνονται το βύθισμα του πλοίου, το είδος του φορτίου και ο προορισμός.
Ηλεκτρονικές Υπηρεσίες και Εφαρμογές στη Ναυτιλία: Ισχύουσα Κατάσταση και Προοπτικές

Οι τύποι λειτουργίας του AIS είναι οι εξής τρεις:
1. Αυτόνομη συνεχής λειτουργία σε όλες τις περιοχές. Τα πλοία εκπέμπουν συνεχώς αναφορές μέσω κοινού διάύλου VHF (πλοίο προς πλοίο).
2. Ερώτησης (Poiling) δηλ. αποστολή πληροφοριών μετα από ερώτηση συστήματος πλοίου ή παράκτιου σταθμού.
3. Ανάθεσης (Assignment) δηλ. λειτουργία σε περιοχές επιβλεψης αρχης όπου το VTS αναλαμβάνει τον έλεγχο εκχώρησης χρονικών σχισμών.

3.1.3. Vessel Traffic Services (VTS)1

Το VTS είναι η υπηρεσία που αναπτύσσεται σε επιλεγμένες περιοχές για τη βελτίωση της ασφάλειας ναυπλοίος και την προστασία του θαλάσσιου περιβάλλοντος. Η υπηρεσία αυτή έχει τη δυνατότητα να επικοινωνεί άμεσα και να αλληλεπιδρά με τα πλοία και να δίνει λύσεις στα προβλήματα ασφάλειας που δημιουργούνται στην περιοχή ευθύνης της. Τα κέντρα VTS εγκαθίστανται σε χώρους των οικείων Λιμενικών Αρχών μιας χώρας και επιβλέπουν την εφαρμογή των κανονισμών διαχείρισης θαλάσσιας κυκλοφορίας, με τρόπο παρόμοιο με αυτόν που εφαρμόζεται στη διαχείριση της εναέριας κυκλοφορίας.

3.1.4. Vessel Traffic Management and Information System (VTMIS)2

Το VTMIS είναι το Εθνικό Κεντρικό Σύστημα που λαμβάνει πληροφορίες από τα κατά τόπους κέντρα VTS, τις επεξεργάζεται κεντρικά και τις διανέμει στους ενδιαφερόμενους. Το κέντρο VTMIS έχει επιτελικό ρόλο και αποτελεί πολύτιμο εργαλείο για ανάλυση των κυκλοφοριακών δεδομένων και για στρατηγικό σχεδιασμό. Παράλληλα αποτελεί τον κύριο συνομιλητή με όλα τα ομότιμα κέντρα που αναπτύσσονται στις χώρες της Ευρωπαϊκής Ένωσης ή τα εθνικά κέντρα λήψης/ διαβίβασης πληροφοριών.

1 Υπουργείο Εμπορικής Ναυτιλίας
2 Υπουργείο Εμπορικής Ναυτιλίας
3.2 Σύγχρονες δορυφορικές τηλεπικοινωνιακές υποδομές και προϊόντα

Εκτός των προαναφερόμενων απαιτούμενων από τη SOLAS συστημάτων, η αγορά των δορυφορικών τηλεπικοινωνιών περιλαμβάνει διάφορα εναλλακτικά συστήματα και υπηρεσίες, προκειμένου να καλυφθούν οι αυξανόμενες ανάγκες των χρηστών, οι οποίες περιλαμβάνουν υψηλότερη ταχύτητα, χαμηλότερο κόστος εγκατάστασης και χρήσης και τέλος ευκολία χειρισμού.

Στην παρούσα φάση, η συντριπτική πλειοψηφία των πλοίων χρησιμοποιεί δορυφορικές υπηρεσίες, οι οποίες προσφέρουν ταχύτητες μεταφοράς δεδομένων μεταξύ 2,4 kbps και 9,6 kbps, ενώ οι ταχύτερες συνδέσεις μέχρι και 128 kbps, οι οποίες εμφανίστηκαν πρόσφατα, έχουν εφαρμοστεί σε νέατερα πλοία. Οι χαμηλές ταχύτητες σύνδεσης επιβάλουν μικρό όγκο μεταφερόμενων πληροφοριών, ήτοι ηλεκτρονικό ταχυδρομείο με περιεχόμενο απλό κείμενο, και καθιστούν ανέφικτη τη μετάδοση εικόνων, εφαρμογών όπως βάσεις δεδομένων, και την απομακρυμμένη σύνδεση του δικτύου γραφείου με το πλοίο.

Ο Inmarsat αποτελεί τον σημαντικότερο παίκτη στις δορυφορικές τηλεπικοινωνιακές υπηρεσίες προς την ναυτιλία με συντριπτικά μεριδία αγοράς, ενώ οι υπηρεσίες Thuraya, Globalstar, Iridium και VSATs συμπληρώνουν το τοπίο. Ενδεικτικά αναφέρεται ότι σύμφωνα με την Inmarsat, το 17% της αγοράς χρησιμοποιεί Inmarsat A, το 27% Inmarsat B, το 48% Inmarsat Mini-M, το 4% Inmarsat Fleet και το 5% καλύπτεται από το υπόλοιπο παρόχους.

Ο ανταγωνισμός αναμένεται να ενταθεί στο άμεσο μέλλον με την είσοδο νέων ευρυζωνικών υπηρεσιών όπως η Connexion by Boeing.

3.2.1 Inmarsat

Τα προσφερόμενα προϊόντα από τον Inmarsat στο χώρο των δορυφορικών επικοινωνιών, περιλαμβάνουν:

1. Τις καθιερωμένες υπηρεσίες, όπως η Inmarsat Mini-M, αλλά και τις προαναφερθείσες στα απαιτούμενα από τη SOLAS/GMDSS Inmarsat B, Inmarsat C, Inmarsat E και
2. Τη νέα οικογένεια υπηρεσιών υψηλής ταχύτητας Fleet

Inmarsat Mini-M

Από την παρουσίαση της το 1998, κατάρθωσε να καταστεί η πιο διαδεδομένη υπηρεσία στην πολιτική ναυτιλία, παρά το γεγονός ότι δεν περιλαμβάνεται στα απαιτούμενα από την SOLAS/GMDSS λόγω της περιορισμένης κάλυψης που προσφέρει ιδιαίτερα
Ηλεκτρονικές Υπηρεσίες και Εφαρμογές στη Ναυτιλία: Ισχύουσα Κατάσταση και Προοπτικές

στο νότιο ημισφαίριο μέσω της χρήσης των κεραίων σημειακής δέσμης (spot beam) στους δορυφόρους Inmarsat III.

Παρά ταύτα χρησιμοποιείται για ένα εύρος εφαρμογών, όπως η μετάδοση με ταχύτητα 2.4kbit/s φωνής, πληροφοριών, ηλεκτρονικού ταχυδρομείου, ενώ στα πλεονεκτήματα του συμπεριλαμβάνεται επίσης οι μικρού μεγέθους και χαμηλού κόστους πομποδέκτης και κεραία.

Σημαντικοί παράγοντες για την διάδοση της αποτελούν το κόστος εγκατάστασης σε πλοίο που ανέρχεται σε USD 4.250, και το κόστος ανά λεπτό χρήση USD 1,3 το λεπτό.

Inmarsat Fleet

Η οικογένεια υπηρεσιών Fleet αποτελούν την πιο πρόσφατη αναβάθμιση των υπηρεσιών της Inmarsat, η οποία προσφέρεται τα τελευταία 3 χρόνια. Περιλαμβάνει τις υπηρεσίες Fleet F77, F55 και F33, οι οποίες υποστηρίζουν ISDN Global Area Network με ταχύτητα μετάδοσης 64 Kbps, η οποία ήδη αναβαθμίστηκε σε 128 Kbps. Επίσης προσφέρουν μόνιμη σύνδεση MPDS με το Internet (αντίστοιχη με το GPRS της κινητής τηλεφωνίας) με χρέωση ανάλογα με τον όγκο και όχι τον χρόνο. Βρίσκονται ήδη εγκατεστημένες σε περισσότερα από 3000 πλοία. Αναλυτικότερα:

<table>
<thead>
<tr>
<th>Fleet F77</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Coverage</td>
<td>Voice</td>
<td>Data (ISDN)</td>
<td>Data (Packet)</td>
<td>Fax</td>
<td>GMDSS</td>
<td>Antenna</td>
</tr>
<tr>
<td>Global</td>
<td>Global/ Digital</td>
<td>64 Kbps</td>
<td>ISDN (Euro Standard)</td>
<td>MPDS Standard</td>
<td>2.44 Kbps</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fleet F55</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Global</td>
<td>Voice</td>
<td>Digital</td>
<td>Data 64 Kbps</td>
<td>ISDN (Euro Standard)</td>
<td>MPDS Standard</td>
<td>96 Kbps</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fleet F33</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Global</td>
<td>Voice</td>
<td>Digital</td>
<td>Data 9.6 Kbps</td>
<td>ISDN</td>
<td>MPDS</td>
<td>9.6 Kbps</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Fleet F77

Το σύστημα Inmarsat Fleet 77, αποτελεί διάδοχο της υπηρεσίας Inmarsat B για τα ποντοπόρα πλοία. Υποστηρίζει Mobile ISDN και Mobile Packet Data Service (MPDS), και προσφέρει υπηρεσία φωνής 64 kbps (τηλεφωνική ποιότητα), υπηρεσία φωνής 4.8 kbps (ποιότητα φωνής Inmarsat mini-M), μεταφορά δεδομένων στα 64 kbps (UDI),
Ηλεκτρονικές Υπηρεσίες και Εφαρμογές στη Ναυτιλία: Ισχύουσα Κατάσταση και Προοπτικές

μεταφορά δεδομένων στα 56 kbps (V110), ποιότητα ήχου στα 3.1 kHZ (ISDN), Mobile Packet Data Service (MPDS) και υπηρεσία fax στα 2.4 kbps.

Συνοπτικά οι εφαρμογές που υποστηρίζονται περιλαμβάνουν: μετάδοση πληροφοριών, πρόσβαση στο Διαδίκτυο, πρόσβαση σε LAN μέσω IP και στο εταιρικό δίκτυο, σύνδεση VPN, e-mail, fax, SMS, φωνή, διαχείριση κλήσεων πληρώματος, τηλεδιάσκεψη (video-conference), παρακολούθηση εξ’ αποστάσεως και τηλεσυντήρηση, τηλεϊατρική και GMDSS.

Η χρέωση βάσει της ποσότητας πληροφορίας και όχι του χρόνου που βρίσκονται online, διευκολύνει στη χρήση μιας σειράς από διαδραστικές (interactive) εφαρμογές σχετικές με το Internet, και ειδικότερα τις διάφορες υπηρεσίες πληροφόρησης και ψυχαγωγίας καθώς και την εκπαίδευσης εξ’ αποστάσεως (τηλε-εκπαίδευση).

Η Fleet F77 επίσης ικανοποιεί τις πρόσφατες προδιαγραφές του IMO για νέα συστήματα, που εισάγονται στο παγκόσμιο σύστημα ασφάλειας στη θάλασσα (GMDSS), παρέχοντας προτεραιότητα και εξασφάλιση επικοινωνίας με τερματισμό –σε χρειασθεί- μιας κανονικής κλήσης (prioritisation and pre-emption).

Το κόστος τερματικού ανέρχεται σε USD15.000, ενώ οι ενδεικτικές χρεώσεις USD/min έχουν ως εξής:
Ηλεκτρονικές Υπηρεσίες και Εφαρμογές στη Ναυτιλία: Ισχύουσα Κατάσταση και Προοπτικές

Το Fleet 55 διαθέτει υπηρεσίες φωνής, fax και data, συμπεριλαμβανομένου ISDN στα 64 kbps, την υπηρεσία Mobile Packet Data Service (MPDS) και fax Group 4. Το Fleet 55, με σημειακή δέσμη δεδομένων και παγκόσμια κάλυψη φωνής, χρησιμοποιεί μετρίου μεγέθους κεραία και είναι κατάλληλο για τις τηλεπικοινωνιακές ανάγκες μικρότερων εμπορικών πλοίων και σκαφών ασφαλείας. Εφόσον υπάρχει κάλυψη για δεδομένα, προσφέρει τις αντίστοιχες υπηρεσίες με το Fleet 77.

Το κόστος τερματικού ανέρχεται σε USD12.000, ενώ οι ενδεικτικές χρεώσεις USD/min έχουν ως εξής:

<table>
<thead>
<tr>
<th>Προσ όλους τους προορισμούς</th>
<th>MES προς MES</th>
</tr>
</thead>
<tbody>
<tr>
<td>Voice 1,70</td>
<td>5,00</td>
</tr>
<tr>
<td>Fax (2,4 kbit/s) 1,70</td>
<td>5,00</td>
</tr>
<tr>
<td>Data (2,4 kbit/s) 1,70</td>
<td>5,00</td>
</tr>
<tr>
<td>Fax (9,6 kbit/s) 2,00</td>
<td>5,00</td>
</tr>
<tr>
<td>Data (9,6 kbit/s) 2,00</td>
<td>5,00</td>
</tr>
<tr>
<td>ISDN 6,50</td>
<td>12,00</td>
</tr>
<tr>
<td>HSD 6,50</td>
<td>12,00</td>
</tr>
<tr>
<td>audio 3.1 kHz 6,50</td>
<td>12,00</td>
</tr>
<tr>
<td>speech 64 kbps 6,50</td>
<td>12,00</td>
</tr>
<tr>
<td>MPDS (Mbit) 3,45</td>
<td></td>
</tr>
</tbody>
</table>

Πηγή: Otesat
Ηλεκτρονικές Υπηρεσίες και Εφαρμογές στη Ναυτιλία: Ισχύουσα Κατάσταση και Προοπτικές

Fleet F33

Το Fleet 33 αποτελεί την απλούστερη έκδοση, προσφέροντας υπηρεσίες φωνής σε παγκόσμια κάλυψη, δεδομένων και φαξ εντός σημειακής δέσμης του Inmarsat με ταχύτητα 9,6 kbit/s e-mail, web και intranet access. Διαθέτει, καθώς και την υπηρεσία Mobile Packet Data Service (MPDS), η οποία επιτρέπει στο χρήστη να συνδεθεί on-line με το IP δίκτυο. Ειδικά σχεδιασμένο για τις ανάγκες των μικρών σκαφών με κεραία μικρής διαμέτρου και ελαφρύ εξοπλισμό.

Το κόστος τερματικού ανέρχεται σε USD 8.000, ενώ οι ενδεικτικές χρεώσεις USD/min έχουν ως εξής:

<table>
<thead>
<tr>
<th>Προς όλους τους προορισμούς</th>
<th>MES προς MES</th>
</tr>
</thead>
<tbody>
<tr>
<td>Voice</td>
<td>1,70</td>
</tr>
<tr>
<td>Fax (2,4 kbit/s)</td>
<td>1,70</td>
</tr>
<tr>
<td>Data (2,4 kbit/s)</td>
<td>1,70</td>
</tr>
<tr>
<td>Fax (9,6 kbit/s)</td>
<td>2,00</td>
</tr>
<tr>
<td>Data (9,6 kbit/s)</td>
<td>2,00</td>
</tr>
<tr>
<td>MPDS (Mbit)</td>
<td>3,45</td>
</tr>
</tbody>
</table>

Πηγή: Otesat

3.2.2. Άλλες δορυφορικές τηλεπικοινωνιακές υπηρεσίες

3.2.2.1 Thuraya

Το σύστημα Thuraya κινητής και δορυφορικής τηλεφωνίας έχει κατασκευαστεί από την Boeing Satellite Systems, με κόστος US$1 δις. Η λειτουργία του συστήματος βασίζεται σε δύο δορυφόρους, τον Thuraya-1 ο οποίος μπήκε σε τροχιά τον Οκτώβριο 2000. Ο δεύτερος δορυφόρος Thuraya-2 εκτοξεύθηκε τον Ιούνιο 2003, ενώ αναμένεται και τρίτος προκειμένου να επεκταθεί η υφιστάμενη χωρητικότητα. Το σύστημα περιελάμβανε την κατασκευή δύο γεωστατικών δορυφόρων, την εκτόξευση του πρώτου, την κατασκευή της επιγείας δικτυωτικής υποδομής, την κατασκευή 250.000 φορητών τηλεφώνων για τους χρήστες και την συνολική ασφάλιση του προγράμματος.

Σχεδιασμένος με προοπτική 12-15 ετών λειτουργίας, ο δορυφόρος Thuraya 2, βρίσκεται σε γεωστατική τροχιά, 35,786 χλμ. (22,236 μίλια) πάνω από τη Γη, σε γεωγραφικό μήκος 44 μοίρες ανατολικά και κλίση 6,3 μοίρες.

Το σύστημα Thuraya συνδυάζει τη λειτουργία σε περιβάλλον κινητής τηλεφωνίας GSM και δορυφορικών τηλεπικοινωνιών. Υποστηρίζει την προπονητική του χώρου κάλυψης ακόμη και σε διάστημα μετά την αρχική λειτουργία. Οι δορυφόροι του εν λόγω συστήματος παρέχουν συνολική χωρητικότητα δικτύου 13,750 τηλεφωνικών κυκλωμάτων. Οι συσκευές είναι συγκρίσιμες με αυτές του δικτύου GSM σε μέγεθος, εμφάνιση και ποιότητα ήχου.
Ηλεκτρονικές Υπηρεσίες και Εφαρμογές στη Ναυτιλία: Ισχύουσα Κατάσταση και Προοπτικές

Τα τεχνικά χαρακτηριστικά του συστήματος περιλαμβάνουν 250-300 σημειακής δέσμης (spot beams) και ψηφιακή διαμόρφωση δέσμης (η οποία παρέχει δυναμική κάλυψη περιοχής).

Το εξειδικευμένο πρόγραμμα της Thuraya προς τη ναυτιλία ονομάζεται SeaOne, και οι παρεχόμενες υπηρεσίες αφορούν σε τηλεφωνία, τηλεομοιοτυπία, μετάδοση data, Internet, e-mail, πρόσβαση στο εταιρείακο δίκτυο και εφαρμογές ηλεκτρονικού εμπορίου. Η υπηρεσία προσφέρει μόνιμη σύνδεση (always on) στα 144 kbps με κόστος USD 2.000 μηνιαίως και αρχικό κόστος εγκατάστασης κεραίας και τερατικού USD 2.500 περίπου.

Η Thuraya καλύπτει τις συγκεκριμένες γεωγραφικές περιοχές ως εξής: τον Περσικό κόλπο, την Ερυθρά θάλασσα, τη Μεσόγειο, τη Βόρεια θάλασσα, τη Βαλτική, την Κασπία, την Μαύρη Θάλασσα και τμήμα του Ινδικού και του Ατλαντικού ωκεανού.

3.2.2.2. Globalstar

Η εταιρία Globalstar λειτουργεί 48 δορυφόρους χαμηλής τροχιάς (LEO) στα 1414 χλμ., οι οποίοι κινούνται σε 8 καθορισμένες τροχιές πεδία προκειμένου να καλύψουν ένα σημαντικό τμήμα της επιφάνειας της Γης από πλάτος 70o Βόρεια έως 70o Νότια, αφήνοντας εκτός τις περιοχές των πόλων και μερικών περιοχών των ωκεανών. Η συγκεκριμένη διαμόρφωση έχει σκοπό να προσφέρει τη καλύτερη κάλυψη στα γεωγραφικά πλάτη με τη μεγαλύτερη πληθυσμιακή πυκνότητα. Οι δορυφόροι εκτοξεύθηκαν το 2000 και η σχεδίαση τους προβλέπει 7,5-10 χρόνια λειτουργίας.

Το σύστημα Globalstar προσφέρει δορυφορικές τηλεπικοινωνιακές υπηρεσίες, οι οποίες περιλαμβάνουν φωνή, Short Messaging Service (SMS), fax και μεταφορά δεδομένων με ταχύτητες έως 9.6 Kbps (ασυμπίεστου περιεχομένου).
Ηλεκτρονικές Υπηρεσίες και Εφαρμογές στη Ναυτιλία: Ισχύουσα Κατάσταση και Προοπτικές

Η δορυφορική μετάδοση είναι ασύμμετρη, από την ηλεκτρική συσκευή του χρήστη προς τους επίγειους σταθμούς ή από τους επίγειους σταθμούς προς την ηλεκτρική συσκευή, χωρίς συνδέσεις μεταξύ δορυφόρων. Σαν συνέπεια, απαιτούνται 100 επίγειοι σταθμοί προκειμένου να υποστηρίζουν τις ασύμμετρες επαφές και την μετάδοση τους σε άλλα επίγεια ή δορυφορικά δίκτυα.

Οι επιλογές τερματικών συσκευών περιλαμβάνουν σταθερές και κινητές (dual mode Globalstar / cellular). Το κόστος της dual mode συσκευής ανέρχεται σε $700 περίπου και το κόστος των υπηρεσιών σε $1,25 έως $1,5 ανά λεπτό.
3.2.2.3 Iridium

Η υπηρεσία Iridium ξεκίνησε στα τέλη της δεκαετίας 90’. Βασίζεται σε ένα δίκτυο
dορυφόρων χαμηλής τροχιάς. Το 1998 εκτοξεύτηκε η πλειοψηφία των δορυφόρων. Το
1999 εταιρία χρεοκόπησε λόγω της αδυναμίας εξυπηρέτησης του υψηλού δανεισμού
($5bn), και το χαμηλό αριθμό συνδρομητών (60.000). Το Δεκέμβριο 2000, το σύστημα
Iridium επανήλθε με νέο μετοχικό σχήμα χωρίς τα προηγούμενα δανειακά βάρη. Το
Μάρτιο του 2001 ξεκίνησε να παρέχει δορυφορικές υπηρεσίες φωνής και δεδομένων
μέσω ενός δικτύου 66 δορυφόρων LEO (Low-Earth Orbiting) σε έξι τροχιακά πεδία, με
11 δορυφόρους ανά πεδίο. Τους δορυφόρους κατασκεύασε και παρακολούθησε η Boeing.
Η συγκεκριμένη διάρθρωση εξασφαλίζει την κάλυψη οποιουδήποτε σημείου της γης από
έναν τουλάχιστον δορυφόρο. Ο κάθε δορυφόρος συνδέεται με δύο άλλους στο τροχιακό
πεδίο του και δύο σε γειτονικά πεδία. Κάθε κλήση μεταφέρεται από τον καλώντα στον
πλησιέστερο δορυφόρο, και στη συνέχεια από δορυφόρο σε δορυφόρο μέχρι το σχετικό
επίγειο σταθμό.
Το Iridium χρησιμοποιεί φορητές τερματικές συσκευές χειρός, οι οποίες είναι λίγο
μεγαλύτερες από τις αντίστοιχες GSM. Ο εξοπλισμός για εγκατάσταση τερματικού σε
πλοίο περιλαμβάνει χαμηλού κόστους τερματικό και κεραία. Το κόστος ανέρχεται σε $1,5
ανά λεπτό ενώ το κόστος της φορητής συσκευής βρίσκεται γύρω στα $1000.
Η σημαντικά μειωμένη κατανάλωση ρεύματος λόγω της σύνδεσης με χαμηλής τροχιάς
δορυφόρους, το καθιστά ανταγωνιστικότερο από το Inmarsat Mini-M ως προς αυτό το
σημείο.
Οι υπηρεσίες του συστήματος Iridium περιλαμβάνουν μετάδοση φωνής, SMS και data
ανεξαρτήτως περιοχής, μεταξύ πλοίου-ξηράς αλλά και πλοίου με πλοίο με ταχύτητες
μέχρι 9,6Kbps. To Iridium προσφέρει επίσης πρόσβαση στο Internet.
Συνοψίζοντας, στα πλεονεκτήματα του Iridium περιλαμβάνεται η παγκόσμια κάλυψη
(συμπεριλαμβανομένων των πόλων) και το κόστος. Το βασικό μειονέκτημα, αντίστοιχα
με το Mini-M της Inmarsat είναι η χαμηλή ταχύτητα μετάδοσης, προκειμένου να
υποστηρίζει υπηρεσίες πέρα από μετάδοση ψηφιακής φωνής και φαξ.
Η επιλογή μεταξύ INMARSAT Mini-M, Globalstar και Iridium εξαρτάται από το κόστος
εγκατάστασης και χρήσης καθώς και την ποιότητα των υπηρεσιών.
3.2.2.4 VSATs

Η τεχνολογία VSAT (Very Small Aperture Terminal) αποτελεί μια καθιερωμένη λύση, η οποία επιτρέπει με τη χρήση μικρού μεγέθους σταθερής δορυφορικής κεραίας, την αξιόπιστη τηλεπικοινωνία μεταξύ ενός κεντρικού κόμβου και γεωγραφικά απομακρυσμένων περιοχών. Σημαντικότερο της πλεονέκτημα είναι η πλούσια ευρυζωνικών εφαρμογών. Η ταχύτητα μεταφοράς δεδομένων μπορεί να ανέλθει μέχρι 2Mbps ως προς τη λήψη και 128 Kbps ως προς την αποστολή.

Η χρήση τους περιλαμβάνει ένα ευρύ φάσμα τηλεπικοινωνιακών εφαρμογών, όπως εταιρικά δίκτυα, τηλεπικοινωνιακές υπηρεσίες σε απομακρυσμένες περιοχές, ναυτιλιακές τηλεπικοινωνίες, εξ αποστάσεως εκπαίδευση, τηλεϊατρική και άλλες.

Το δίκτυο VSAT αποτελείται από ένα κεντρικό σταθμό ελέγχου και σημαντικό αριθμό απομακρυσμένων VSATs και δορυφορικώς αναμεταδότες (transponder segment) (συνήθως γεωστατικούς δορυφόρους στη δέσμη συχνοτήτων C ή Ku).

Η αρχιτεκτονική του δικτύου VSAT συμπεριλαμβάνει μια από τις εξής μορφές: αστεροειδής, full-mesh, ή την υβριδική. Η αστεροειδής μορφή σημαίνει ότι ο κεντρικός σταθμός επικοινωνεί με όλους τους απομακρυσμένους χρήστες. Η συγκεκριμένη αρχιτεκτονική χρησιμοποιείται για τη μετάδοση τηλεπικοινωνικού σήματος. Για την επικοινωνία δύο τερματικών, παρεμβάλλεται πάντα ο κεντρικός σταθμός. Η "full-mesh" μορφή σημαίνει ότι οποιοδήποτε τερματικό στο δίκτυο μπορεί να επικοινωνήσει απευθείας με άλλο τερματικό μέσω δορυφόρου χωρίς να παρεμβάλλεται ο κεντρικός σταθμός. Η "υβριδική" μορφή σημαίνει ότι το δίκτυο συνδυάζει τις παραπάνω μορφές.

Επιπλέον σημειώνεται ότι τα σύγχρονα συστήματα VSAT κάνουν χρήση του πρωτόκολλου DVB (Digital Video Broadcasting).

Τα VSAT είναι διαδεδομένα εκτός ναυτιλιακά, επειδή αποτελούν μια πλατφόρμα επικοινωνιών με εύκολη εγκατάσταση και ανταγωνιστικό κόστος. Βρίσκονται στην αγορά για περισσότερα από 10 χρόνια, και πάνω από 500.000 χρήστες σε 120 χώρες.

Σχετικά πρόσφατα αναπτύχθηκαν τερματικός εξοπλισμός VSAT για ναυτιλιακές εφαρμογές, ο οποίος περιλαμβάνει ειδικού τύπου κεραίας προκειμένου να ακολουθούν την κίνηση των δορυφόρων. Το κόστος του τερματικού συστήματος για πλοίο, λόγω και της πλατφόρμας σταθεροποίησης κεραίας, είναι υψηλό. Στη συνέχεια ο χρήστης ενοικιάζει χωρητικότητα (transponder capacity), η οποία χρεώνεται με σταθερό μηνιαίο πάγιο αντί χρέωσης ανά λεπτό. Διάφοροι προμηθευτές που προσφέρουν λύσεις VSAT είναι η Invsat, η Telia, η Satpool, η ViaSat, η Indra Espacio, η Telenor, η Xantic, η Geolink και η Hellas Sat.

Η μέχρι σήμερα χρήση των VSAT στην ναυτιλία εστιάστηκε κυρίως στην ακτοπλοΐα και τα κρουαζιερόπλοια και περιλαμβάνει δύο επίπεδα εφαρμογών:

Ομάδα Εργασίας Η1 ΣΧΕΔΙΟ ΤΕΛΙΚΟΥ ΠΑΡΑΔΟΤΕΟΥ 30
Α. Την ολοκληρωμένη πλατφόρμα τηλεπικοινωνιών η οποία καλύπτει όλο το φάσμα των αναγκών, όπως φωνή, φαξ, πρόσβαση στο Internet, διαχείριση πλοίου Fleet management, maintenance logistics, υποστήριξη ναυσιπλοίων, κλειστό κύκλωμα τηλεόρασης, τηλεϊατρική, εξ αποστάσεως εκπαίδευση, και operations monitoring.

Β. Τη γεωγραφική επέκταση της κάλυψης των GSM τηλεπικοινωνιακών υποδομών. Σε αυτή την περίπτωση, το σύστημα VSAT μετατρέπει το πλοίο σε μια κυψέλη GSM όπου επιβάτες και πλήρωμα μπορούν να χρησιμοποιήσουν τα κινητά τους τηλέφωνα.

Η παραπάνω εικόνα παρουσιάζει την αρχιτεκτονική του δικτύου που υιοθετήθηκε από τις ΜΙΝΩΙΚΕΣ ΓΡΑΜΜΕΣ. Ο σταθμός GSM πάνω στο πλοίο συνδέεται μέσω VSAT με το επίγειο δίκτυο GSM, δίνοντας στους επιβάτες να χρησιμοποιούν το κινητό τους τηλέφωνο με την υπηρεσία roaming κατά τη διάρκεια του ταξιδιού.

3.2.2.5. HELLAS SAT
Η εταιρία HELLAS SAT Consortium Ltd αποτελεί κοινοπραξία μεταξύ ελληνικών και Κυπριακών συμμετέχοντων με κύριο μέτοχο τον ΟΤΕ. Ελέγχει έναν δορυφόρο τύπου ASTRIUM Eurostar 2000+ Platform, ο οποίος καλύπτει την Ευρώπη, τη Μέση Ανατολή και τη Βόρεια Αφρική. Οι προσφερόμενες υπηρεσίες περιλαμβάνουν μεταφορά δεδομένων μέσω δικτύου VSAT και σύνδεση με το Ίντερνετ, καθώς και υπηρεσίες φωνής. Το κόστος ανέρχεται σε €150-€200 μηνιαίως, με την προϋπόθεση την αρχική δαπάνη αγοράς εξοπλισμού.
3.3 Μελλοντικές εξελίξεις
3.3.1 Connexion by Boeing

Πρόκειται για υπηρεσία ευρυζωνικής σύνδεσης υψηλών ταχυτήτων μέσω δορυφόρου, που ξεκίνησε με σκοπό την παροχή τηλεφωνικών και Internet στους επιβάτες κατά τη διάρκεια των αεροπορικών ταξιδιών και θα επεκταθεί στο άμεσο μέλλον στην ποντοπόρο ναυτιλία. Η υπηρεσία θα έχει τη δυνατότητα να προσφέρει ταχύτητες πάνω από 1 Mbps, επιτρέποντας τέρα από την πρόσβαση στο Internet και φωνητικές κλήσεις, την σύνδεση με το εταιρικό δίκτυο, διακίνηση μεγάλου όγκου πληροφοριών, αλληλογραφία email με συνημμένα. Το αυξημένο εύρος θα επιτρέπει στην διαχειρίστρια εταιρεία, να παρακολουθεί από το γραφείο τα συστήματα του πλοίου και το φορτίο, να βελτιώσουν την συντήρηση και να βελτιστοποιούν την πορεία του πλοίου.

Το σύστημα Connexion by Boeing για την ποντοπόρο ναυτιλία θα χρησιμοποιεί ένα υφιστάμενο δορυφορικό και επίγειο δίκτυο. Η ενεργοποίηση της συγκεκριμένης υπηρεσίας αναμένεται στο 4ο τρίμηνο του 2005 και θα κοστίζει σύμφωνα με τον πάροχο US$2.800 μηνιαίως συμπεριλαμβανομένης της χρονομηχανής του εξοπλισμού για 2000 λεπτά για μετάδοση πληροφορίας σε ταχύτητα 128kbps και 100 λεπτά φωνής. Ο χάρτης κάλυψης θα περιλαμβάνει στην αρχή σημαντικό τμήμα του βορείου ημισφαίριος, και μέχρι το τέλος του 2006 αντίστοιχα το νότιο ημισφαίριο. Σύμφωνα με την εταιρεία θα καλύπτεται το 99% των θαλάσσιων διαδρομών που χρησιμοποιούνται στην ποντοπόρο ναυτιλία.

3.3.2 Inmarsat - Δίκτυο BGAN

Παρότι παρέχονται από τις υπηρεσίες Fleet ταχύτητες μέχρι 128 kbit, η υπηρεσία BGAN (Broadband Global Area Network) αποτελεί τη σημαντικότερη εξέλιξη από πλευράς Inmarsat, προσφέροντας μέσω ενός δορυφορικού IP modem με μέγεθος ενός φορτηγού υπολογιστή, το οποίο συνδέεται με διάφορους εναλλακτικούς τρόπους με τον υπολογιστή (Ethernet ή Bluetooth). Η ταχύτητα μεταφοράς δεδομένων ανέρχεται έως τα 144 kbps, περίπου διπλάσια από την αντίστοιχη της τεχνολογίας GPRS (General Package Radio Service), και όπως το GPRS προσφέρει μόνιμη σύνδεση “always on” και χρέωση ανάλογη με τον όγκο της μεταφερόμενης πληροφορίας.

Το φάσμα των εφαρμογών που υποστηρίζονται μέσω του Regional BGAN περιλαμβάνει την ασφαλή μετάδοση μέσω κρυπτογράφησης, άμεση πρόσβαση στο εταιρικό δίκτυο, τη δυνατότητα σύνδεσης με Virtual Private Networks, την πρόσβαση υψηλής ταχύτητας στο Internet, την ηλεκτρονική αλληλογραφία, τη μεταφορά αρχείων μεγάλου μεγέθους, όπως εικόνα και βίντεο και την απομακρυσμένη συντήρηση των υπολογιστών (Remote IT Support).
Ηλεκτρονικές Υπηρεσίες και Εφαρμογές στη Ναυτιλία: Ισχύουσα Κατάσταση και Προοπτικές

Στην παρούσα φάση η υπηρεσία χαρακτηρίζεται ως Regional (περιφερειακή), καλύπτοντας 99 χώρες στην Ευρώπη, τη Μέση Ανατολή, την Ινδική Χερσόνησο και σημαντικό μέρος της Αφρικής. Τον Ιούλιο του 2005, αναμένεται η σταδιακή αναβάθμιση της υπηρεσίας παροχής υψηλής ταχύτητας, με την εκκίνηση λειτουργίας της τέταρτης γενιάς δορυφόρων της Inmarsat, τους I-4.

Οι δορυφόροι έχουν σχεδιαστεί από την EADS και η επιχειρησιακή ζωή τους αναμένεται να υπερβεί τα 10 έτη. Κάθε δορυφόρος θα έχει τη συγκεκριμένη θέση του στην τροχιά γύρω από τον Ισημερινό, σε ύψος 35,786 km και θα ταξιδεύει με ταχύτητα 11,064 km/h προκειμένου να συγχρονίζεται με την ταχύτητα περιστροφής της γης. Ο πρώτος I-4 θα τοποθετηθεί στον 64ο ανατολικά πάνω από τον Ινδικό ωκεανό ενώ ο δεύτερος στον 54ο δυτικά πάνω από την Βραζιλία. Η μεταφορά της κυκλοφορίας στον πρώτο νέο δορυφόρο θα σημαίνει την επέκταση της κάλυψης στο μεγαλύτερο μέρος της Αφρικής και της Ασίας, συμπεριλαμβάνοντας τη Ρωσία, την Κίνα, την Ινδονησία, καθώς και την Αυστραλία. Σκοπός της υπηρεσίας BGAN είναι η επέκταση της ταχύτητας των συνδέσεων μεταφοράς δεδομένων από τα 144 kbps στο 0,5 Mbps.

3.3.3 Virtual Private Networks – (Σύνδεση πλοίου – γραφείου)

Η διαρκής επέκταση χρήσης του Internet, οδήγησε τις επιχειρήσεις στη εφαρμογή λύσεων μέσω αυτού προκειμένου να επεκτείνουν τα δίκτυα τους. Πρώτα εμφανίστηκαν τα Intranets, τα οποία αποτελούν sites τα οποία σχεδιάστηκαν για χρήση μέσω κωδικού από τους εργαζόμενους. Στη συνέχεια εμφανίστηκαν τα VPN (Virtual Private Networks).

Πηγή: Cisco Systems, Inc.
Ένα τυπικό VPN μπορεί να περιλαμβάνει ένα κύριο LAN στα κεντρικά γραφεία, και επιμέρους LANs στις απομακρυσμένες εγκαταστάσεις καθώς και ανεξάρτητους χρήστες.
Ηλεκτρονικές Υπηρεσίες και Εφαρμογές στη Ναυτιλία: Ισχύουσα Κατάσταση και Προοπτικές

Το VPN είναι ένα ιδιωτικό δίκτυο, το οποίο συνδέει απομακρυσμένους χρήστες και τοπικά δίκτυα σε ένα ενιαίο WAN. Αντί όμως να χρησιμοποιείται μια αποκλειστική πραγματική σύνδεση, όπως η μισθωμένη γραμμή στην ξηρά, το VPN χρησιμοποιεί συνδέσεις μέσω ενός κοινόχρηστου δικτύου (συνήθως το Internet).

Προϋπόθεση για την εφαρμογή τους αποτελεί η διαρκής σύνδεση με το Internet καθώς και η υψηλής ταχύτητας μεταφορά δεδομένων. Οι επερχόμενες ευρυζωνικές υπηρεσίες οι οποίες προσφέρουν στο πλοίο τη δυνατότητα να συνδέεται μόνιμα με το Internet μέσω MPDS καθιστούν εφικτή την επέκταση των εταιρικών δικτύων των ναυτιλιακών εταιρειών, συμπεριλαμβάνοντας ως κόμβο τους το πλοίο.

Τα πλεονεκτήματα ενός VPN περιλαμβάνουν την διασύνδεση σε ένα ενιαίο δίκτυο απομακρυσμένων γεωγραφικά χρηστών, αυξημένη αποδοτικότητα και ασφάλεια και δυνατότητα υποστήριξης από μακριά.

3.3.4. GALILEO

Το σύστημα δορυφόρων Galileo παρουσιάστηκε για πρώτη φορά το Φεβρουάριο 1999. Ο Galileo θα περιλαμβάνει 30 δορυφόρους, οι οποίοι θα βρίσκονται σε μια τροχιά γύρω στα 24,000 χλμ. γύρω από την γη. Επίσης, θα καλύπτει όλο τον πλανήτη μέσω της σύνδεσης του με 14 περίπου επίγειους σταθμούς σε όλο τον κόσμο, οι οποίοι θα παρακολουθούν και θα ελέγχουν την θέση αλλά και την λειτουργία αυτών.

Η δορυφορική ναυσιπλοία θα αποτελέσει τη βασική υπηρεσία, επισημαίνοντας τη θέση του πλοίου με τη μέτρηση των αποστάσεων σε τουλάχιστον τρεις γνωστές θέσεις – τους δορυφόρους του Galileo. Η απόσταση σε έναν δορυφόρο καθορίζει μια σφαίρα των πιθανών λύσεων. Ο συνδυασμός τριών σφαιρών καθορίζει μια ενιαία, κοινή περιοχή που περιέχει την άνωθεν θέση. Η ακρίβεια των μετρήσεων απόστασης καθορίζει πόσο μικρή είναι η κοινή περιοχή και έτσι την ακρίβεια της τελικής θέσης. Στην πράξη, ένας δέκτης συλλαμβάνει τα χρονικά σήματα από τους δορυφόρους και τα μετατρέπει στις αντίστοιχες αποστάσεις.
Το σύστημα Galileo υποστηρίζεται από ένα πιλοτικό πρόγραμμα που ονομάζεται NAUPLIOS και το οποίο θα βοηθήσει στην βελτίωση του εντοπισμού θέσης και του ελέγχου των θαλασσών της Ευρώπης, έτσι ώστε να αποφευχθούν ατυχήματα πλοίων και ρύπανση των θαλασσών. Οι κύριες λειτουργίες του NAUPLIOS είναι:

- πλοήγηση, η οποία παρέχει πληροφορίες πλοήγησης σε πλοία (τοποθεσία, προσανατολισμός).
- Τηλεπικοινωνία, ώστε να ανταλάσσει πληροφοριακά δεδομένα μεταξύ των πλοίων και του κέντρου ελέγχου.
- Σύνδεσμος κινδύνου, ώστε να μεταδίδει τα επείγοντα μηνύματα από τα πλοία στα κέντρα διάσωσης μέσω του δορυφόρου COSPAR-SARSAT.
- Σύνδεσμος αναμετάδοσης, για βεβαίωση λήψης και συντονισμού του μηνύματος (για ενημέρωση πλοίων στην επικίνδυνη περιοχή). Η επιπρόσθετη αξία του Galileo είναι αυτός ο σύνδεσμος αναμετάδοσης.

Το σύστημα Galileo θα βελτιώσει επίσης τις υπηρεσίες έρευνας και διάσωσης, αυξάνοντας την παγκόσμια απόδοση του παρόντος συστήματος COSPASS-SARSAT, προσφέροντας:

- Αληθινό χρόνο λήψης επειγόντων μηνυμάτων που εκπέμπονται από όλη τη γη.
- Ακριβή τοποθεσία των συναγερμών (η ακρίβεια της τοποθεσίας είναι μερικά μέτρα με το Galileo, ενώ με τα υπάρχοντα συστήματα είναι μερικά χιλιομέτρα).
- Πολλαπλή δορυφορική ανίχνευση για αποφυγή επιγειούς εμποδίου σε δύσκολες καταστάσεις.
- Αυξημένη διαθεσιμότητα του τμήματος διαστήματος.

Επιπλέον το Galileo θα εισάγει μια καινούργια λειτουργία, τον σύνδεσμο επιστροφής από τον χειριστή του SAR στον κίνδυνο που εκτέθεται, και με αυτόν τον τρόπο θα διευκολυνθούν οι υπηρεσίες διάσωσης και θα βοηθήσει στο να εντοπιστούν και να απορριφθούν οι λάθος συναγερμοί.

3.4 Συμπεράσματα

Λαμβάνοντας υπόψη τις υφιστάμενες δορυφορικές υπηρεσίες, προσφέρεται πλέον ένα σύνολο εναλλακτικών υπηρεσιών στις δορυφορικές τηλεπικοινωνίες, εκτός από τον κύριο παίκτη Inmarsat. Οι Iridium και Globalstar παρουσιάζουν ανταγωνιστικά προϊόντα στις υπηρεσίες φωνής, ενώ τα συστήματα VSAT προσφέρουν ήδη τη δυνατότητα για ευρυζωνική σύνδεση του πλοίου. Επιπλέον, συστήματα βασισμένα σε περιφερειακούς γεωστατικούς δορυφόρους όπως το Thuraya, σε συνδυασμό με τα επίγεια συστήματα
Ηλεκτρονικές Υπηρεσίες και Εφαρμογές στη Ναυτιλία: Ισχύουσα Κατάσταση και Προοπτικές

κινητής τηλεφωνίας αποτελούν εναλλακτική με χαμηλότερο κόστος για συγκεκριμένες γεωγραφικές περιοχές. Η επιλογή της κατάλληλης υπηρεσίας εξαρτάται πλέον από τις συγκεκριμένες ανάγκες του χρήστη, το κόστος χρήσης και εξοπλισμού.

Οι δορυφορικές τηλεπικοινωνίες εξελίχθηκαν τα τελευταία χρόνια με γρήγορο ρυθμό, με αποτέλεσμα να αναμένονται στο άμεσο μέλλον νέες τεχνολογίες, οι οποίες θα προσφέρουν ευρυζωνικές συνδέσεις στη Ναυτιλία. Παράλληλα ο ανταγωνισμός μεταξύ των παρόχων αναμένεται να οδηγήσει σε μείωση του κόστους, προσφέροντας τη δυνατότητα υιοθέτησης των νέων αυτών υπηρεσιών. Αυτό θα έχει ως συνέπεια την αποτελεσματικότερη ανταλλαγή δεδομένων, την υποστήριξη ολοκληρωμένων εφαρμογών και τέλος την ενοποίηση του πλοίου με το εταιρικό δίκτυο ως μόνιμα συνδεδεμένου κόμβου.
Ηλεκτρονικές Υπηρεσίες και Εφαρμογές στη Ναυτιλία: Ισχύουσα Κατάσταση και Προοπτικές

Κεφάλαιο 4
Ηλεκτρονικές ναυτιλιακές εφαρμογές και υπηρεσίες

Σύμφωνα με τους στόχους εργασίας της ομάδας Η1, όπως παρουσιάστηκε στην εισαγωγή, δεύτερη κατεύθυνση αποτελεί η χρήση και παροχή ηλεκτρονικών υπηρεσιών για την αποτελεσματική διαχείριση των εργασιών στις διαχειρίστριες ναυτιλιακές εταιρείες καθώς και τάνω στα πλοία (onboard) που αυτές διαχειρίζονται. Οι λύσεις που παρουσιάζονται στην μελέτη αφορούν κυρίως εταιρείες που τα πλοία τους δραστηριοποιούνται στην ποντοπόρο ναυτιλία και στην ναυτιλία γραμμών χωρίς να αποκλείονται και αυτές που δραστηριοποιούνται στην ναυτιλία μικρών αποστάσεων.

Στο παρόν κεφάλαιο θα γίνει αναφορά στις ηλεκτρονικές εφαρμογές υποστήριξης των ναυτιλιακών υπηρεσιών και εργασιών, καθώς και μια υποκειμενική κατηγοριοποίησή τους. Οι μορφές που παρουσιάζονται ποικίλουν, αλλά δύναται να διαχωριστούν σε δυο κύριες κατηγορίες ανάλογα με τον τόπο χρήσης τους, δηλαδή στις εφαρμογές γραφείου και πλοίου, οι οποίες συνεργάζονται στις περισσότερες περιπτώσεις, λειτουργούν δηλαδή συμπληρωματικά ανταλλάζοντας δεδομένα / πληροφορίες, ώστε η διαχείριση του δεύτερου από το γραφείο να γίνεται με αποτελεσματικότερο τρόπο.
4.1 Κατηγοριοποίηση ηλεκτρονικών εφαρμογών

Οι ηλεκτρονικές εφαρμογές γραφείου μπορούν να χωριστούν σε 9 βασικές κατηγορίες ανάλογα με το αντικείμενο χρήσης τους. Μια διαχειρίστρια εταιρία αυξάνει τον βαθμό μηχανοργάνωσης και δικτύωσης της μεταξύ των τμημάτων της και με το πλοίο, όταν χρησιμοποιεί εφαρμογές καλύπτοντας και τις 9 βασικές κατηγορίες. Μελλοντικά δεν αποκλείεται να δούμε την υλοποίηση της πλήρους αυτοματοποίησης των γραφείων/τμημάτων στις ναυτιλιακές και την αναγκαία μόνο διακίνηση έντυπων εγγράφων.

Οι 9 βασικές κατηγορίες των προσφερόμενων προϊόντων / υπηρεσιών ανάλογα με την χρήση είναι οι εξής και θα αναλυθούν παρακάτω:

- Λογισμικό επικοινωνιών
- Τεχνική παρακολούθηση και συντήρηση του πλοίου
- Συστήματα διαχείρισης ποιότητας και ασφάλειας (ISM, ISPS)
- Παρακολούθηση αποθεμάτων
- Ηλεκτρονικές προμήθειες / παραγγελίες
- Operations/ Voyage management
- Διαχείριση του ανθρωπινού δυναμικού - Πλήρωμα
- Ολοκληρωμένα συστήματα
- Ηλεκτρονικές ναυτιλιακές αγορές
4.2 Λογισμικό επικοινωνίας

Οι ανάγκες ανταλλαγής δεδομένων και εγγράφων μεταξύ πλοίου – γραφείου διευρύνονται συνεχώς, λόγω των αυξανόμενων γραφειοκρατικών απαιτήσεων του κώδικα ασφαλούς διαχείρισης ISM και του κώδικα ασφαλείας ISPS. Στην κατηγορία αυτή ανήκουν εφαρμογές οι οποίες συνδέουν το γραφείο με το πλοίο, καθώς και οι εφαρμογές εντός της εταιρίας. Θα μπορούσαμε να τις ονομάσουμε και εφαρμογές διαχείρισης αλληλογραφίας.

Δεδομένων των τηλεπικοινωνιακών λύσεων και του μεγαλύτερου εύρους ζώνης που προσφέρονται στην ναυτιλιακή αγορά, οι εφαρμογές αυτές έχουν στόχο την γρήγορη ανταλλαγή ηλεκτρονικών μηνυμάτων και δεδομένων, καθώς επίσης και την μείωση του κόστους αποστολής και λήψης. Ένας παράγοντας που βοηθάει στην μείωση του κόστους είναι η συμπίεση δεδομένων και ο έλεγχος των συστημάτων για μόλυνση από κακόβουλο λογισμικό κ.λπ. Σημαντικό πρόβλημα που παρουσιάζεται στους mail servers των ναυτιλιακών εταιριών είναι η λήψη spam mail, καθώς και email με κακόβουλο κώδικα και η αυτόματη αποστολή τους στα πλοία, αυξάνονταν το τηλεπικοινωνιακό κόστος.

Στην δεύτερη περίπτωση οι εφαρμογές αυτές χρησιμοποιούνται εντός της εταιρίας προκειμένου να γίνει η ανταλλαγή πληροφοριών, αρχείων και δεδομένων. Συμβάλλουν στην ορθή αρχειοθέτησή τους και στην εύκολη προσπέλασή τους από μια βάση δεδομένων εντός της εταιρίας. Δημιουργούνται δηλαδή ιστορικά στοιχεία στην εταιρία για μελλοντική αναφορά. Το λογισμικό επικοινωνίας έχει την δυνατότητα να φιλτράρει τα μηνύματα που εισέρχονται στην εταιρία και να τα διαμορίσεις στους άμεσα ενδιαφερόμενους, αποφεύγοντας την αύξηση του ρυθμού ροής των email στους χρήστες / στελέχη με πληροφορίες που δεν θα χρησίμευσαν στο αντικείμενο εργασίας και που θα κατανάλωναν χρόνο για να τις φιλτράρουν μόνοι τους.

Μια πιο εξελιγμένη επικοινωνία μεταξύ πλοίου – γραφείου είναι η τηλεδιάσκεψη. Αυτή μπορεί να επιτευχθεί όταν το πλοίο χρησιμοποιεί για την επικοινωνία του με την στεριά γραμμή ISDN. Σημαντική εφαρμογή της τηλεδιάσκεψης πάνω στο πλοίο είναι η τηλείατρική, η οποία χρησιμοποιείται σε κατάσταση έκτακτης ανάγκης, όταν κάποιο από τα μέλη του πληρώματος βρίσκεται σε άμεσο κίνδυνο υγείας και η άμεση ιατρική βοήθεια είναι απομακρυσμένη.
4.3. Τεχνική παρακολούθηση και συντήρηση του πλοίου

(Planned/Periodic Maintenance System/Ship Performance/Repairs)

Η εφαρμογή παρακολούθησης της απόδοσης του πλοίου έχει ως στόχο να παρατηρήσει τις τυχόν αλλαγές που μπορεί να προκυψούν κατά την λειτουργία του πλοίου στην διάρκεια του ταξιδιού (π.χ. μείωση ταχύτητας, μηχανικά προβλήματα, στο κέλυφος/κύτος του πλοίου) από τα δεδομένα που αποστέλλονται από το πλοίο μέσω ειδικών συστημάτων παρακολούθησης (monitoring). Το τεχνικό τμήμα στο γραφείο λαμβάνει τις πληροφορίες και κάνει περίπλοκους υπολογισμούς προκειμένου να εξάγει συμπεράσματα και να εκτιμήσει την κατάσταση σε κάθε περίπτωση. Οι εφαρμογές αυτές αυτοματοποιούν τους υπολογισμούς και κάνουν έτσι την εξαγωγή των αποτελεσμάτων ευκολότερη, δημιουργώντας ιστορικά στοιχεία για την κατάσταση του πλοίου και των μερών του. Οι περιοδικές επισκέψεις και επιδιορθώσεις μπορούν να προγραμματιστούν και να διατηρηθεί το πλοίο σε πολύ καλή εάν όχι αριστή κατάσταση, αποφεύγοντας μεγάλες περιόδους σε επισκευαστικούς χώρους, πράγμα που είναι αντίθετο με την αρχή ότι το πλοίο πρέπει να εργάζεται συνεχώς (3600μ/ώς) και κάθε ημέρα αναμονής σε επισκευαστικό χώρο είναι αντιοικονομικό, καθώς αποτελεί απώλεια εισοδήματος και αύξηση των εξόδων για την διαχείριστρια εταιρία. Επίσης γίνεται έλεγχος για την απορροή μεγάλυτερων ζημιών στο πλοίο και τον κίνδυνο ρύπανσης, καθώς επίσης
Ηλεκτρονικές Υπηρεσίες και Εφαρμογές στη Ναυτιλία: Ισχύουσα Κατάσταση και Προοπτικές μπορούν να προγραμματιστούν και οι επιθεωρήσεις (annual & special surveys) από τον νηογνώμονα που παρακολουθεί το πλοίο για την έκδοση των απαραίτητων πιστοποιητικών.
Ηλεκτρονικές Υπηρεσίες και Εφαρμογές στη Ναυτιλία: Ισχύουσα Κατάσταση και Προοπτικές

Monitoring/ Hull & Machinery Maintenance

Οι εφαρμογές αυτές έχουν ως στόχο την συνεχή παρακολούθηση της κατάστασης του πλοίου και είναι άμεσα ή έμμεσα συνδεδεμένες με τα τεχνικά συστήματα παρακολούθησης που βρίσκονται στην εταιρία. Τα στοιχεία που συλλέγει το σύστημα του πλοίου αποστέλλονται στην εταιρία για περαιτέρω επεξεργασία, ενώ πάνω στο πλοίο τα στοιχεία χρησιμοποιούνται για την παρακολούθηση των λειτουργιών και την αποφυγή ή ειδοποίηση των στελεχών του πληρώματος σε κατάσταση ανάγκης. Μελλοντικά με το σύστημα SCADA (Supervisory Control And Data Acquisition) εκτιμάται ότι θα μπορεί να γίνεται συνεχής παρακολούθηση της απόδοσης του πλοίου από το γραφείο.

Με το hull & machinery maintenance system γίνεται η αποτύπωση της κατάστασης του κύτους του πλοίου ώστε να διαπιστωθεί ή/και να οργανωθεί ο δεξαμενισμός του πλοίου προκειμένου να γίνουν οι κατάλληλες εργασίες πάνω σε αυτό. Το σύστημα παρέχει σχεδιαγράμματα μηχανής / κατασκευής, πληροφορίες για τα ανταλλακτικά και καταγράφει ιστορικά στοιχεία προβλημάτων και εργασιών/ επιδιορθώσεων που έχουν γίνει στο πλοίο.
Ηλεκτρονικές Υπηρεσίες και Εφαρμογές στη Ναυτιλία: Ισχύουσα Κατάσταση και Προοπτικές

Δεξαμενισμός

Υπάρχουν ειδικές εφαρμογές παρακολούθησης δεξαμενισμών και εργασιών πάνω στο πλοίο οι οποίες συνδέονται με το Σύστημα Προγραμματισμού Περιοδικής Συντήρησης (Planned/ Periodic Maintenance System) της εταιρείας. Δημιουργούνται ιστοχώρες για τις εργασίες που έχουν γίνει πάνω στο πλοίο, καθώς και τα αποτελέσματα που παρατηρήθηκαν από μετρήσεις κ.α. Το λογισμικό παρέχει λίστες με εργασίες που πρέπει να προγραμματιστούν και να πραγματοποιηθούν κατά τον ετήσιο δεξαμενισμό. Βοηθάει επίσης στην ακριβή περιγραφή των απαιτήσεων του δεξαμενισμού προκειμένου να δημιουργηθούν ορθές αιτήσεις για προσφορές τιμών στα ναυπηγεία. Το λογισμικό λαμβάνει τις προσφορές και αναλαμβάνει να κάνει την σύγκριση τιμών και υπηρεσιών προκειμένου να επιλέγει η πιο συμφέρουσα.

4.4. Συστήματα διαχείρισης ποιότητας και ασφάλειας (ISM/ISPS Code)

Η διεθνής ναυτιλιακή νομοθεσία αυξάνει τις ανάγκες για την ασφαλή διαχείριση και ασφάλεια στο πλοίο και το γραφείο. Οι εφαρμογές που έχουν δημιουργηθεί για την κάλυψη των σκοπών αυτών χαρακτηρίζονται από την καλή οργάνωση που επιτυγχάνουν στα εγχειρίδια, λίστες εργασιών και αναφορές. Ο κώδικας ασφαλούς διαχείρισης (International Safety Management Code) περιλαμβάνει επίσης και αναφορές περιστατικών (incident reports) τα οποία θα πρέπει να
Ηλεκτρονικές Υπηρεσίες και Εφαρμογές στη Ναυτιλία: Ισχύουσα Κατάσταση και Προοπτικές

συμπληρωθούν χειρόγραφα. Η εφαρμογή αυτή έχει ως στόχο την καταγραφή των
gεγονότων που συμβαίνουν πάνω στο πλοίο και την ενημέρωση του συστήματος
επείγουσας κατάστασης και διαχείρισης (emergency management system).
Καθορίζονται λίστες εργασιών για τα μέλη του πληρώματος, οι οποιες εργασίες τους
έχουν ανατεθεί και πρέπει να ολοκληρωθούν σε προκαθορισμένο χρόνο. Συνεπώς
dημιουργείται ένας έλεγχος εργασιών τόσο εσωτερικός όσο και από την εταιρία πάνω
στο πλοίο.

Oi εφαρμογές του International Ship and Port Facility Security Code (ISPS Code)
έρχονται να διευκολύνουν τα στελέχη του πλοίου στην συμπλήρωση φορμών και της
λίστας του πληρώματος που απαιτούν οι κατά τόπους λιμενικές αρχές πριν την άφιξη
tου πλοίου στο λιμάνι (Electronic Notice of Arrival/Departure).
4.5. Παρακολούθηση Αποθεμάτων (Inventory Control)

Οι εφαρμογές παρακολούθησης αποθεμάτων χρησιμοποιούνται για την παρακολούθηση των αποθεμάτων που βρίσκονται πάνω στο πλοίο και που αφορούν τα εφόδια ενδιαίτησης, καταστρωτός και μηχανής (cabin, deck και engine stores). Ο έλεγχος αποθεμάτων είναι πολύ σημαντικός στον συντονισμό των παραγγελιών, ο οποίος συντελεί στην αύξηση του όγκου τεμαχίων και την επίτευξη καλύτερης δυνατής τιμής για το τμήμα αγορών (purchasing department). Μπορεί επίσης να γίνει έλεγχος της πορείας της παραγγελίας και να δοθούν οι ανάλογες οδηγίες στους τρίτους για την παραλαβή και παράδοση των τεμαχίων στο πλοίο.
4.6. Ηλεκτρονικές προμήθειες / παραγγελίες (εφόδια, ανταλλακτικά)

Οι εφαρμογές των ηλεκτρονικών παραγγελιών συνδέονται άμεσα με την διαχείριση και έλεγχο των αποθεμάτων. Με τις εφαρμογές αυτές δίνεται η δυνατότητα στην εταιρία να πραγματοποιήσει παραγγελίες εφοδίων και ανταλλακτικών. Επίσης με την χρήση των ηλεκτρονικών υπηρεσιών μπορεί ο υπεύθυνος αγορών (purchase manager) να κάνει σύγκριση τιμών και να επιλέξει την πιο συμφέρουσα προσφορά.
Είναι ακόμη να περιγράψουμε τον τρόπο με τον οποίο διεξάγεται η παραδοσιακή εφοδιαστική στην ναυτιλιακή βιομηχανία και η οποία περιλαμβάνει την πραγματοποίηση παραγγελιών και την διεκπεραίωσή της αποστολής στον αγοραστή. Με την περιγραφή αυτή θα μπορέσουμε να εξάγουμε συμπεράσματα για τον σύγχρονο τρόπο διεξαγωγής της ηλεκτρονικής εφοδιαστικής και τα εμφανή οφέλη που προκύπτουν και για τα δύο μέρη, αγοραστές και πωλητές.

Τα πλοία χρειάζονται προμήθειες σε τακτά χρονικά διαστήματα με ορισμένα ποιοτικά χαρακτηριστικά και στην πιο συμφέρουσα τιμή. Η παραγγελία ξεκινάει με μια αίτηση αγοράς (purchase requisition) από το πλοίο. Ο καπετάνιος ή κάποιος αξιωματικός γράφει μια λίστα με τα επιθυμητά αντικείμενα / είδη και μέσω του δορυφορικού συστήματος που έχει το πλοίο αποστέλλονται στα γραφεία της εταιρίας. Η λίστα μπορεί να σταλεί μέσω telex, fax ή email στο τμήμα αγορών. Στην αίτηση περιγράφονται με λεπτομέρεια τα είδη των προμηθειών και οι ποσότητές τους. Ο υπεύθυνος του γραφείου για τις αγορές ελέγχει την λίστα προκειμένου να βεβαιωθεί ότι οι προδιαγραφές των εφοδιων είναι σωστές και ότι οι αιτούμενες ποσότητες δεν είναι υπερβολικές. Στις περισσότερες περιπτώσεις έχει παρατηρηθεί αυτό να μειώνουν τις παραγγελίες κατά 15%. Εν συνεχεία ζητούν προσφορές από διάφορους προμηθευτές ώστε να επιτύχουν την χαμηλότερη δυνατή τιμή. Οι προμηθευτές στέλνουν τις προσφορές τους στον υπεύθυνο και αυτός με την σειρά τους ελέγχει και ξεκινάει τις διαπραγματεύσεις για την τιμή. Έπειτα οι προμηθευτές στέλνουν καινούργια προσφορά με πιο ανταγωνιστικές τιμές προκειμένου να έχουν μεγαλύτερες ελπίδες για να αναλάβουν την δουλειά. Ο
Ηλεκτρονικές Υπηρεσίες και Εφαρμογές στη Ναυτιλία: Ισχύουσα Κατάσταση και Προοπτικές

υπεύθυνος αγορών συγκρίνει τις προσφορές που του έχουν παραχωρήσει και τότε επιλέγει έναν ή περισσότερους προμηθευτές. Στέλνει την παραγγελία στον επιλεγμένο προμηθευτή και εκείνος επανεξετάζει με επιβεβαίωση παραγγελίας (order confirmation). Ο προμηθευτής λαμβάνει τις οδηγίες παράδοσης των εφοδίων και κανονίζει την αποστολή τους στον ορισμένο τόπο και χρόνο που έχει προ-συμφωνηθεί. Με την παραλαβή των εφοδίων ένα μέλος του πληρώματος ελέγχει τα εφόδια, τόσο όσον αφορά την ποιότητά τους όσο και την ποσότητά τους και εφόσον όλα βρέθηκαν κανονικά σύμφωνα με την παραγγελία που είχε γίνει, ο καπετάνιος ισχυρίζεται και σφραγίζει με την σφραγίδα του πλοίου το τιμολόγιο και κρατάει ένα αντίγραφο. Έπειτα ο προμηθευτής αποστέλλει το τιμολόγιο στην εταιρεία προκειμένου να πληρωθεί. Η εταιρεία εξετάζει το τιμολόγιο και διευθετεί την πληρωμή του. Η πληρωμή του προμηθευτή μπορεί να γίνει είτε της μετρητής είτε επί πιστώσεως. Ο παραδοσιακός τρόπος διεξαγωγής εφοδιασμού ενός πλοίου μπορεί εύκολα να κατανοηθεί από το παρακάτω διάγραμμα.

Διάγραμμα 1: Παραδοσιακός τρόπος Ροής της Εφοδιαστικής (Gram, 2002)

Πρέπει να λάβουμε υπόψιν όλη την περιπλοκότητα που μπορεί να προκύψει όταν γίνει λάθος στην παραγγελία από το πλοίο στην περιγραφή ή στον Κωδικό του είδους και η
Ηλεκτρονικές Υπηρεσίες και Εφαρμογές στη Ναυτιλία: Ισχύουσα Κατάσταση και Προοπτικές

οποία στη συνέχεια αποστέλλεται στον προμηθευτή, ο οποίος μπορεί να αποστείλει λάθος προϊόν. Συνεπώς γίνονται πιο συχνές επαφές μεταξύ των μερών κατά την διάρκεια διεκπεραίωσης της παραγγελίας προκειμένου να βεβαιωθούν ότι τα δεδομένα είναι σωστά, αλλά αυτό συνεπάγεται μεγαλύτερα τηλεπικοινωνιακά έξοδα. Για την πραγματοποίηση της αίτησης παραγγελιών χρησιμοποιούνται κατάλογοι ISSA (International Ship Suppliers Association) ή IMPA (International Marine Purchase Association) που κατηγοριοποιούν πάνω από 55.000 αντικείμενα σε είδη εξοπλισμού γέφυρας, ενδιάμεσης, καταστρώματος, ανταλλακτικών και εξοπλισμού ασφαλείας. Ο κατάλογος παρέχεται σε μορφή βιβλίου, CD-Rom καθώς και στο Διαδίκτυο.

4.7. Operations / Voyage Management

Voyage Management

Οι εφαρμογές διαχείρισης ταξιδιού αποτελούν ένα πακέτο εργαλείων με την χρήση των οποίων τα στελέχη καλούνται να λάβουν αποφάσεις για την δραστηριότητα του πλοίου. Λαμβάνοντας υπόψιν τον μεγάλο αριθμό και την πολυπλοκότητα των παραγόντων και των συνθηκών που επικρατούν στην αγορά για την λήψη ορθών αποφάσεων στην εκμετάλλευση του πλοίου, οι εφαρμογές πρέπει να λαμβάνονται και σε σύντομο χρονικό διάστημα, οι εφαρμογές συντελούν στην απλοποίηση των υπολογισμών για τους μάνατζερ και την άμεση διαθεσιμότητα των οδηγών ταξιδιού στους πλοιάρχους. Οι εφαρμογές αναλύουν το ταξίδι και δίνουν πληροφορίες που αφορούν την κατανάλωση (ώστε να γίνει και ο κατάλληλος προγραμματισμός ανεφοδιασμού καύσιμου και λιπαντικών), τις ημέρες που χρειάζεται το πλοίο για να φτάσει στον προορισμό και το κόστος που θα έχει ημερησίως. Μελλοντικά αναμένεται η ανάπτυξη εφαρμογών που θα αναλύουν και τις καιρικές συνθήκες κατά μήκος του ταξιδιού και θα σχεδιάζουν την βέλτιστη πορεία (optimal route) του πλοίου.
Ηλεκτρονικές Υπηρεσίες και Εφαρμογές στη Ναυτιλία: Ισχύουσα Κατάσταση και Προοπτικές

Ομάδα Εργασίας Η1

ΣΚΕΔΙΟ ΤΕΛΙΚΟΥ ΠΑΡΑΔΟΤΕΟΥ

50
Ηλεκτρονικές Υπηρεσίες και Εφαρμογές στη Ναυτιλία: Ισχύουσα Κατάσταση και Προοπτικές

Το τμήμα των ναυλώσεων χρησιμοποιεί παρόμοια εργαλεία προκειμένου να κάνει μια προσέγγιση στα έξοδα του πλοίου και να λάβει αποφάσεις σε συνεργασία με το τμήμα επιχειρήσεων (operations department) για την ναύλωση του πλοίου.

Łogisμικό ασφαλούς φόρτωσης πλοίου - Loadicator
Η εφαρμογή αυτή χρησιμοποιείται για την ασφαλή φόρτωση και έλεγχο των φορτίων πάνω στο πλοίο. Το λογισμικό επιτρέπει την ισορροπημένη φόρτωση του πλοίου, πραγματοποιώντας υπολογισμούς που αφορούν την αντοχή του πλοίου, καθώς και των χαρακτηριστικών του φορτίου, βάρους, όγκου, θερμοκρασίας, ειδικού βάρους, μορφής κ.α. Τέλος δίνει ένα σχεδιάγραμμα του πλοίου σχετικά με τον καλύτερο και ασφαλέστερο τρόπο φόρτωσης ανάλογα με το ταξίδι, συνεπώς μειώνεται ο χρόνος υπολογισμού και λαθών. Στην παρακάτω εικόνα παρουσιάζεται στιγμιότυπο από τους υπολογισμούς που γίνονται για την πλήρωση ενός δεξαμενοπλοίου με φορτίο.
Αγοροπωλησίες / Ναυλώσεις Πλοίων (S&P / Chartering)

Ένας άλλος τομέας της ναυτιλιακής βιομηχανίας, είναι αυτός των ναυλώσεων και των αγοροπωλησιών πλοίων. Ο ρόλος του μεσιτή είναι να φέρει τα ενδιαφερόμενα μέρη σε επαφή, δηλαδή τον πλοιοκτήτη και τον ναυλωτή, προκειμένου να συνάψουν συμβόλαιο για την μεταφορά φορτίου ή τον πλοιοκτήτη με κάποιον υποψήφιο αγοραστή του πλοίου. Οι εργασίες που εκτελεί ο μεσιτής είναι πολύπλοκες και μπορούν να συνοψιστούν στις ακόλουθες κατηγορίες:

- Απόκτηση πληροφοριών και διοχέτευση στο δίκτυο πελατών ή συναδέλφων.
- Δίνει συμβουλές εξαιτίας των γνώσεών του για την αγορά.
- Διαπραγματεύεται τα συμβόλαια και εκπροσωπεί τον πελάτη του.
- Βοηθάει στην διαιτησία μεταξύ των ενδιαφερόμενων μερών.

Ένας πλοιοκτήτης θα επιλέξει τον μεσιτή του σύμφωνα με την φήμη του, τις ικανότητές του και τις διαπροσωπικές σχέσεις που έχουν μεταξύ τους. Ένας καλός μεσιτής θεωρείται εκείνος που έχει τις σωστές πληροφορίες, καλό δίκτυο συνεργατών, καλή γνώση της αγοράς, καλές διαπραγματευτικές ικανότητες με αποτέλεσμα να συνάπτει συμφέροντα συμβόλαια για τον πελάτη του και δίνει συμβουλές σε νομικά και
Ηλεκτρονικές Υπηρεσίες και Εφαρμογές στη Ναυτιλία: Ισχύουσα Κατάσταση και Προοπτικές

ασφαλιστικά θέματα. Οι ναύλοι που εισπράττουν οι πλοιοκτήτες από την σύναψη του συμβολαίου για προσφορά μεταφορικών υπηρεσιών αποτελούν και το μοναδικό έσοδο, συνεπώς, η σωστή και συμφέρουσα ισόλυση ενός πλοίου είναι επιτακτική για την βιωσιμότητά του πλοίου. Πρέπει να υπογραμμισθεί η σημαντικότητα της προσωπικής σχέσης μεταξύ των εμπλεκομένων μερών. Η εμπιστοσύνη κτίζεται με μακροχρόνια και επιτυχής συνεργασία και οι μεσίτες προσφέρουν έναν «κώδικα τιμής» όπου η καλή φήμη γίνεται πρωταρχικής σημασίας.

Η χρήση των διεπιχειρησιακών διαδικτυακών επιχειρήσεων αγορών στις ναυλώσεις και στις αγοροπωλήσεις πλοίων, είχε ως σκοπό να εκτελέσει τους ενδιάμεσους στην σύναψη συμφωνίας μεταξύ πλοιοκτητών και ναυλωτών ή πωλητών και αγοραστών, οι οποίοι με την παραδοσιακή μορφή διεξαγωγής της ναυλώσης ή της αγοροπωλήσεως μπορούν να ξεπεράσουν τους δυο ή τρεις. Οι μεσίτες πληρώνονται με προμήθεια 1,25% επί του ναύλου και κάθε ένας που προστίθεται στην αλυσίδα προστατεύει και την προμήθειά του. Η αρχική σκέψη των δημιουργών αυτού του είδους ηλεκτρονικών αγορών ήταν να παρακάμψουν τους ενδιάμεσους και να εισπράξουν εκείνοι την προμήθεια. Η ιδέα αυτή αρχικά φαίνεται ελκυστική για τους εφοπλιστές, όμως οι μεσίτες έχουν ισχυρή θέση και μπορούν να αντιδράσουν σε μια τέτοια κίνηση. Αυτοί είναι οι οποίοι έχουν τη γνώση της αγοράς και μόνο αυτοί μπορούν να διασφαλίσουν χαρτία για τους εφοπλιστές σε περιόδους ύφεσης της ναυλαγοράς. Συνεπώς οι εφοπλιστές στηρίζονται στην μακροχρόνια σχέση που έχουν με τους μεσίτες και έχοντας συνειδητοποιήσει την σημαντικότητα του ρόλου τους αποφεύγουν να καταφύγουν σε διαδικτυακές λύσεις, αφού θα κλόνιζε την εμπιστοσύνη των μεσιτών στα πλαίσια της συνεργασίας τους.

Ομάδα Εργασίας Η1
ΣΧΕΔΙΟ ΤΕΛΙΚΟΥ ΠΑΡΑΔΟΤΕΟΥ
53
Ηλεκτρονικές Υπηρεσίες και Εφαρμογές στη Ναυτιλία: Ισχύουσα Κατάσταση και Προοπτικές

<table>
<thead>
<tr>
<th>Τίτλο</th>
<th>Σελίδα</th>
<th>Μέρος</th>
<th>Νεανίδα</th>
<th>Σχεδίου</th>
<th>Τελικού</th>
<th>Παράδοτού</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Υπηρεσία</th>
<th>Σκάφος</th>
<th>Μάρκετ</th>
<th>Για πώληση</th>
<th>Μάρκετ</th>
<th>Σκάφος</th>
<th>Εξυπηρέτηση</th>
<th>Για πώληση</th>
</tr>
</thead>
<tbody>
<tr>
<td>Εργασία</td>
<td>Έργα</td>
<td>Έργα</td>
<td>Έργα</td>
<td>Έργα</td>
<td>Έργα</td>
<td>Έργα</td>
<td>Έργα</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Καταστάσεις</th>
<th>Προοπτικές</th>
<th>Ομάδα Εργασίας</th>
<th>Σχεδίου</th>
<th>Τελικού</th>
<th>Παράδοτού</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ισχύουσα</td>
<td>Προοπτικές</td>
<td>Ομάδα Εργασίας</td>
<td>Σχεδίου</td>
<td>Τελικού</td>
<td>Παράδοτού</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Σχεδίου</th>
<th>Τελικού</th>
<th>Παράδοτού</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ωκεανός</td>
<td>Υπηρεσία</td>
<td>Εφαρμογές</td>
</tr>
</tbody>
</table>
Ηλεκτρονικές Υπηρεσίες και Εφαρμογές στη Ναυτιλία: Ισχύουσα Κατάσταση και Προοπτικές

4.8 Διαχείριση του ανθρωπινού δυναμικού - Πλήρωμα

Οι απαιτήσεις της STCW 95 για τα προσόντα των ναυτικών αυξάνονται με τον χρόνο και η έκδοση και παρακολούθηση των διπλωμάτων και προσόντων των ναυτικών γίνεται πιο απαιτητική. Το λογισμικό που προσφέρεται ευρέως σήμερα παρέχει δυνατότητες συνεχούς παρακολούθησης και παροχής πληροφοριών για κάθε μέλος του πληρώματος που εργάζεται ή έχει εργαστεί για λογαριασμό της εταιρίας.

Οι ηλεκτρονικές εφαρμογές διαχείρισης προσωπικού γραφείου – πλοίου έχουν την δυνατότητα παρακολούθησης της ισχύος των διπλωμάτων και της ικανότητας των ναυτικών για την καταλληλότητά τους για τις ενδιαφερόμενες θέσεις εργασίας. Για παράδειγμα, η σύνθεση του πληρώματος πάνω στο πλοίο εξαρτάται από την σημαία που έχει, κάθε νηπιαγωγία έχει διαφορετικές απαιτήσεις στην εκπαίδευση των ναυτικών και στις ελάχιστες απαιτήσεις για την ασφαλή σύνθεση του πληρώματος. Έτσι ανάλογα και με το μέγεθος του πλοίου μπορούν να εργασθούν ναυτικοί σε θέσεις που η διαδικασία εργασίας τους είναι λιγότερα, οπότε και ο μισθός θα είναι ανάλογος με αποτέλεσμα ο διαχειριστής να εξοικονομεί χρηματικούς πόρους και από τους μισθούς τους. Τα αρχεία των ναυτικών μπορούν να χρησιμοποιηθούν για την αξιολόγησή τους καθ’ όλη την διάρκεια εργασίας τους στο πλοίο και η εφαρμογή μπορεί να συνδεθεί με το τμήμα μισθοδοσίας του λογιστηρίου. Αποτελεί επίσης ένα αριστο εργαλείο ανεύρεσης ικανών ναυτικών σε περιπτώσεις άμεσης ανάγκης αντικατάστασης μελών πληρώματος καθώς και παρακολούθησης των εξόδων επαναπατρισμού, που ενδιαφέρει το λογιστήριο της εταιρίας.
Εκπαίδευση (Training)

Οι συνεχείς απαιτήσεις ασφάλειας πάνω στο πλοίο και οι ενέργειες αποφυγής ατυχημάτων και ρύπανσης, αύξησαν και τις αντίστοιχες απαιτήσεις για την εκπαίδευση των ναυτικών. Για τον σκοπό αυτό δημιουργήθηκαν επιμορφωτικά σεμινάρια και εφαρμογές για την συνεχή τους ενημέρωση και εκπαίδευση. Οι εταιρίες προσπαθούν με αυτές τις ενέργειες να διασφαλίσουν την ποιότητα των υπηρεσιών τους και να διαφυλάξουν την εταιρική τους ευθύνη.

4.9. Accounting/ MGA/ Payroll / D/A

Οι απαιτήσεις για τον οικονομικό έλεγχο της εταιρίας (auditing) έχει οδηγήσει τις εταιρίες δημιουργίας μηχανογραφημένου λογιστήριου στην δημιουργία ολοκληρωμένων λύσεων / συστημάτων για την παρακολούθηση κάθε οικονομικής συναλλαγής που γίνεται από το πλοίο και την εταιρία. Παλαιότερα όλες οι εισαγωγές οικονομικών δεδομένων γίνονταν μόνο από το λογιστήριο της εταιρίας, αντίθετα οι εισαγωγές οικονομικών στοιχείων έχουν αποκεντρωθεί, με αποτέλεσμα τη μηχανή αυτή να είναι αποτελεσματικότερη, για την επικοινωνία παρακολούθησης και ενημέρωσης του χρήστη της συσκευής. Αποφεύγεται με αυτόν τον τρόπο η διακοπή της επικοινωνίας με τον χρήστη της συσκευής και αποφεύγεται η πρόκειται για αιτία εκτύπωσης στον χρήστη της συσκευής, για την πληρωμή μισθών (payroll). Αποφεύγεται με αυτό τον τρόπο η διακοπή της επικοινωνίας με τον χρήστη της συσκευής και αποφεύγεται η πρόκειται για αιτία εκτύπωσης στον χρήστη της συσκευής, για την πληρωμή μισθών (payroll). Αποφεύγεται με αυτόν τον τρόπο η διακοπή της επικοινωνίας με τον χρήστη της συσκευής, για την πληρωμή μισθών (payroll).
Ηλεκτρονικές Υπηρεσίες και Εφαρμογές στη Ναυτιλία: Ισχύουσα Κατάσταση και Προοπτικές

Ο Γενικός Λογαριασμός Πλοιάρχου (MGA – Master’s General Account) αποτελεί μια ξεχωριστή λογιστική εφαρμογή που βρίσκεται πάνω στο πλοίο και συμπληρώνεται από τον πλοίαρχο. Ο πλοίαρχος μπορεί να ενημερώσει άμεσα την εταιρεία για τις οικονομικές δραστηριότητες του και για τον τρόπο διάθεσης των χρημάτων που του παρέχει η εταιρεία για έκτακτα έξοδα του πλοίου και του πληρώματος (cash to master). Ο πλοίαρχος ο οποίος είναι και υπεύθυνος για τις πληρωμές των μισθών μπορεί να έχει άμεση πληροφόρηση από την εταιρία και η εταιρία να έχει ακολούθως πληροφόρηση για την αποπληρωμή των υποχρεώσεών της στα μέλη του πληρώματος.
Μια σημαντική οικονομική λειτουργία είναι ο έλεγχος και η έγκριση των τιμολογίων και των λιμενικών εξόδων του πλοίου (Disbursement Accounts). Το σύστημα μπορεί να κάνει υπολογισμούς για τα έξοδα του πλοίου στο λιμάνι και να ορίσει προτεραιότητες πληρωμών σε τρίτους.
4.10. Ηλεκτρονικές ναυτιλιακές αγορές

Στο τέλος της δεκαετίας του 90’ η βιομηχανία των μεταφορών και κυρίως της ναυτιλίας προχώρησε σε σημαντικές αλλαγές με την πολλά υποσχόμενη χρήση του διαδικτύου και των νέων τεχνολογιών που αυτή παρείχε στις εταιρείες. Πολλές εταιρείες που ασχολούνταν με τη δημιουργία διεπιχειρησιακών εφαρμογών εστίασαν στις συναλλαγές και υπηρεσίες που διεξάγονται στους κλάδους των μεταφορών και της ναυτιλίας και στην παροχή λογισμικού με βάση τις τεχνολογίες του διαδικτύου. Έως της αρχές του 2000 εμφανίστηκαν περισσότερες από 100 διαφορετικές ναυτιλιακές εταιρείες που ασχολούνταν με το ηλεκτρονικό εμπόριο. Αυτές οι επιχειρήσεις προήλθαν αρχικά κυρίως από προστάθεις Ελληνικών, Νορβηγικών και Βρετανικών ναυτιλιακών οικογενειών, από επενδυτές, καθώς και από προμηθευτές και άλλους συμμετέχοντες στην βιομηχανία. Αυτές οι εταιρείες είχαν ως σκοπό να προσφέρουν λύσεις βασισμένες στις τεχνολογίες του διαδικτύου στις εταιρείες του κλάδου των μεταφορών και της ναυτιλίας που επικεντρώνονταν πάνω:

- Στις ναυλώσεις.
- Στις αγοροπωλησίες των μεταχειρισμένων πλοίων και εμπορευματοκιβωτίων.
- Στην αγορά και πώληση πετρελαιοειδών.
- Στις αγορές ανταλλακτικών και εφοδίων.
- Στην αποτελεσματική διαχείριση των μεταφορικών μέσων και των φορτίων.
- Στην αποτελεσματική διεκπέραση των συναλλαγών μεταξύ των συμμετέχοντων εταιρειών στην αγορά των μεταφορών και την σωστή διαχείριση των πληροφοριών.

Σκοπός των εταιρειών παροχής τεχνολογικών λύσεων ήταν να δημιουργήσουν αποτελεσματικότερη διαχείριση των πόρων που χρησιμοποιούν οι ναυτιλιακές και μεταφορικές εταιρείες ώστε να επιτύχουν σημαντικά οφέλη. Όμως σε πολλές περιπτώσεις οι προστάθεις των εταιρειών δεν είχαν τα αναμενόμενα αποτελέσματα με συνέπεια την συρρίκνωση της αγοράς και της επανεξέτασης των πραγματικών αναγκών των μεταφορικών και ναυτιλιακών εταιρειών. Πολλές εταιρείες απέτυχαν να καλύψουν τις πραγματικές ανάγκες των πελατών τους, πιθανόν διότι ο σχεδιασμός των υπηρεσιών που προσέφεραν δεν ανταποκρίνονταν σε αυτές, και οι πρώτες έκλεισαν ή εξαγοράστηκαν από κάποιες άλλες οι οποίες είχαν μεγαλύτερη πείρα στον χώρο και οι οποίες είχαν επιτίθεσε περισσότερο στις ανάγκες των πελατών τους. Στην συνέχεια προκειμένου να καλυφθούν και άλλες ανάγκες, όπως η τυποποίηση των δεδομένων και των πρωτοκόλλων επικοινωνίας, δημιουργήθηκαν οργανισμοί τυποποίησης, όπως ήταν η MeCA (Maritime Ecommerce Association).
Οι εταιρίες δημιουργούν διαδικτυακές ηλεκτρονικές αγορές μεταφορικού και ναυτιλιακού περιεχομένου (B2B Marketplaces). Οι κύριοι τομείς δραστηριότητας είναι οι ηλεκτρονικές ναυλώσεις, οι αγορές και πωλήσεις πλοίων, οι υπηρεσίες logistics, καθώς και οι ηλεκτρονικοί κατάλογοι και αγοραπωλησίες ανταλλακτικών και εφοδίων. Η σύνδεση στις ναυτιλιακές αγορές γίνεται με την χρήση ονόματος χρήστη και κωδικού και δεν απαιτείται αναβάθμιση των συστημάτων από την μεριά των αγοραστών.

Οι πάροχοι λύσεων λογισμικού αποτελούν εταιρίες που προσφέρουν λύσεις στους κλάδους της ηλεκτρονικής εφοδιαστικής καθώς και σε εργαλεία διαχείρισης και οργάνωσης των εταιριών μεταφορών και ναυτιλίας. Σκοπός τους είναι να αναλύσουν τις ανάγκες κάθε εταιρίας και να προτείνουν μια ολοκληρωμένη λύση. Χρησιμοποιούν ένα κλειστό κύκλωμα πελατών ώστε να προσφέρουν υπηρεσίες προστιθέμενης αξίας. Η τιμολόγηση των υπηρεσιών σχετίζεται είτε βάσει ποσοστού επί της συναλλαγής είτε με πληρωμή δικαιωμάτων χρήσης του λογισμικού.

Μια πολύ καλή μελέτη περιπτώσεως θα μπορούσε να θεωρηθεί η εταιρία Shipserv, η οποία δραστηριοποιείται στην ηλεκτρονική εφοδιαστική και έχει έναν μεγάλο αριθμό πελατών που ο αριθμός των πλοίων τους είναι πάνω από πέντε χιλιάδες (500).

Τα κύρια πλεονεκτήματα που παρουσιάζονται από την χρήση του λογισμικού και της διεπιχειρησιακής ηλεκτρονικής αγοράς της ShipServ μπορούν να συνοψιστούν στα εξής:

- Μείωση της πληκτρολόγησης των φορμών συναλλαγής
- Μείωση των λαθών κατά την πληκτρολόγηση των κωδικών των εφοδίων και των ανταλλακτικών.
- Μείωση των αποθεμάτων που τηρούνται πάνω στο πλοίο μέσα από κανονικόποιση των παραγγελιών.
- Μείωση των τηλεπικοινωνιακών εξόδων με την χρήση του διαδικτύου μέσω δορυφορικών συστημάτων πάνω στο πλοίο.

4.11. Ψηφιακοί Χάρτες

Τα διάφορα συστήματα ηλεκτρονικού χάρτη που χρησιμοποιούνται στην ναυτιλία, ανάλογα με τις λειτουργικές τους δυνατότητες, τα τεχνικά χαρακτηριστικά του υλικού (hardware), τους χρησιμοποιούμενους ηλεκτρονικούς χάρτες, κατατάσσονται στις παρακάτω κατηγορίες:

- Συστήματα ECDIS (Electronic Chart Display and Information Systems). Τα συστήματα αυτά είναι αποδεκτά από τον Διεθνή Ναυτιλιακό Οργανισμό.
Ηλεκτρονικές Υπηρεσίες και Εφαρμογές στη Ναυτιλία: Ισχύουσα Κατάσταση και Προοπτικές

- Συστήματα RCDS (Raster Chart Display Systems). Τα συστήματα αυτά είναι αποδεκτά από τον Διεθνή Ναυτιλιακό Οργανισμό υπό προϋποθέσεις.
- Απλά Συστήματα Ηλεκτρονικού Χάρτη γνωστά σαν ECS (Electronic Chart Systems). Τα συστήματα αυτά δεν είναι αποδεκτά από τον Διεθνή Ναυτιλιακό Οργανισμό.

Σύμφωνα με τις αποφάσεις του IMO, τα συστήματα ηλεκτρονικού χάρτη που καλύπτουν πλήρως τις απαιτήσεις της ασφάλειας της ναυσιπλοΐας και η χρήση τους απαλλάσσει τον ναυτιλιομόνο από την υποχρέωση χρησιμοποίησης έντυπων ναυτικών χαρτών και ναυτιλιακών εκδόσεων, είναι τα συστήματα ECDIS -Electronic Chart Display and Information Systems. Οι ηλεκτρονικοί χάρτες που χρησιμοποιούνται με τα συστήματα ECDIS, ονομάζονται Ηλεκτρονικοί Ναυτιλιακοί Χάρτες (Electronic Navigational Charts-ENCs). Οι χάρτες αυτοί είναι χάρτες διανυσματικής μορφής (vector charts) και κατασκευάζονται από τις υδρογραφικές υπηρεσίες των διαφόρων χωρών, ή σε αντίθετη περίπτωση με τη έγκριση τους.

Κάλυψη ENC– Ελλάδας

4.12. Μελλοντικές εξελίξεις

Προτυποποίηση Εγγράφων και Συναλλαγών (Document & Transaction Standardization)

Η MeCA3 (Marine E-Commerce Association) δημιουργήθηκε τον Ιούνιο 2000 ως ένα ανεξάρτητο σώμα τυποποίησης που υποστηρίζει την ανάπτυξη και εξέλιξη των

3 Βλέπε http://www.meca.org.uk/
Ηλεκτρονικές Υπηρεσίες και Εφαρμογές στη Ναυτιλία: Ισχύουσα Κατάσταση και Προοπτικές

Ηλεκτρονικών εμπορικών τυποποιήσεων στην ναυτιλιακή βιομηχανία. Η MeCA δημιούργησε την Marine Trading Markup Language (MTML), μια νέα γλώσσα βασισμένη στην XML, η οποία είναι συμβατή με τα πρότυπα του International Marine Purchasing Association (IMPA), τα οποία είναι τα Electronic Trading Standard Format (ETSF) και χρησιμοποιούνται ευρέως στην ηλεκτρονική εφοδιαστική και την ναυτιλιακή βιομηχανία.

Το IMPA ETSM βασίζεται στο πρότυπο UN/EDIFACT για την ηλεκτρονική ανταλλαγή πληροφοριών. Επειδή βασίζεται στην XML, το νέο πρότυπο για τη διεξαγωγή του ηλεκτρονικού επιχειρεί μέσω του διαδικτύου, η MTML ανοίγει νέους ορίζοντες στο ηλεκτρονικό εμπόριο σε μεγαλύτερο φάσμα εταίρων, δηλαδή και στις μικρομεσαίες επιχειρήσεις που υπηρετούν τις ανάγκες της ναυτιλιακής βιομηχανίας.

Η χρήση της Marine Trading Markup Language (MTML)

Η Marine Trading Markup Language (MTML) έχει σχεδιαστεί έτσι ώστε να διευκολύνει το εμπόριο στη ναυτιλιακή βιομηχανία με την χρήση του διαδικτύου.

Χρησιμοποιώντας την MTML, η ναυτιλιακή βιομηχανία και κυρίως οι προμηθευτές μπορούν να αποστείλουν και να αποδέχονται αιτήσεις προσφορών (requests for quotes), προσφορές (quotations), παραγγελίες (orders) χρησιμοποιώντας το υπάρχον λογισμικό τους. Δεν χρειάζονται ακριβό λογισμικό για την χρησιμοποίηση της MTML και τα αρχεία της μπορούν να δημιουργηθούν και επεξεργαστούν σε έναν προσωπικό υπολογιστή ή να αποσταλούν μέσω ηλεκτρονικού ταχυδρομείου. Ένα παράδειγμα της μορφής της MTML για αίτηση προσφοράς μπορούμε να δούμε στην παρακάτω εικόνα.

An example of MTML use (Request for Quotation)

4 Βλέπε http://www.impa.net
5 Βλέπε http://www.meca.org.uk
Ηλεκτρονικές Υπηρεσίες και Εφαρμογές στη Ναυτιλία: Ισχύουσα Κατάσταση και Προοπτικές

Στο επόμενο διάγραμμα μπορούμε να παρατηρήσουμε όλη την διαδικασία που ακολουθείται σύμφωνα με το πλαίσιο εργασιών της MTML από την δημιουργία της αίτησης μέχρι και την αποδοχή της παραγγελίας. Είναι ένα πολύ καλό παράδειγμα πιθανό να γίνονται οι διαδικασίες ηλεκτρονικά καθώς επίσης και με τον παραδοσιακό τρόπο, αλλά χωρίς την ψηφιοποίηση των εγγράφων η διαδικασία χρειάζεται περισσότερο χρόνο και έχει μεγαλύτερο κόστος.

Διάγραμμα 2: Διάγραμμα Ροής των Διαδικασιών της MTML (MeCA, 2002)

Με την εγκαθίδρυση ενός οργανισμού όπως η MeCA, η ναυτιλιακή βιομηχανία κάνει την αρχή για την τυποποίηση των εγγράφων της. Με την χρήση των γλωσσών αυτών (MTML, XML) οι εταιρείες προάγουν τις συναλλαγές τους σε υψηλότερο τεχνολογικό επίπεδο. Οι γλώσσες αυτές μπορούν να υιοθετηθούν ευρέως στον ναυτιλιακό τομέα, καθώς η διανομή και η χρήση τους είναι δωρεάν, εν συνεχίζει με το πρότυπο του EDI που είναι εξαιρετικά ακριβό να υλοποιηθεί και υποστηρίζει την ηλεκτρονική συνένωση μόνο δυο εταιριών. Ένας προβληματισμός που διαφαίνεται είναι ο τρόπος που θα γίνει η ενιαία κωδικοποίηση των εφοδίων, αφού μέχρι στιγμής οι μάνατζερ των αγορών (purchase managers) χρησιμοποιούν τους κωδικούς της IMPA6 (International Marine Purchasing Association) ενώ οι προμηθευτές τους κωδικούς ISSA7 (International Ship Suppliers Association). Πρέπει επίσης να ληφθεί υπόψη και ο τρόπος περιγραφής της ποιότητας των παραγγελθέντων εφοδίων/ανταλλακτικών καθώς και οι διαστάσεις τους. Μια άλλη παρατήρηση είναι ότι πολλά πλοία μεγάλης ηλικίας που δραστηριοποιούνται στις βαλάσιες μεταφορικές υπηρεσίες έχουν πεπαλαιωμένα μηχανήματα που συχνά η

6 http://www.impa.net/
7 http://www.shipsupply.org/
4.13. Συμπεράσματα

I. Κάλυψη αναγκών και διασύνδεση ηλεκτρονικών εφαρμογών

Οι πάροχοι υπηρεσιών και λύσεων καλύπτουν ολοένα και περισσότερο τις υφιστάμενες, αλλά και προετοιμάζονται και για τις μελλοντικές ανάγκες των πελατών τους. Προσπαθούν να διασυνδέσουν τις εφαρμογές τους ώστε να αποτέλεσουν ανταγωνιστικό πλεονέκτημα προσφέροντας συνολική υποστήριξη και συνεχή υποστήριξη των υπηρεσιών και εφαρμογών. Από την άλλη μεριά παρουσιάζονται ναυτιλιακές εταιρίες, που το μέγεθος τους και η τεχνογνωσία τους, τους δίνει την δυνατότητα να αναπτύξουν δικές τους εφαρμογές (in-house) και κατά περίπτωση να τις πωλήσουν και σε άλλες εταιρίες.

II. Διαφοροποίηση προσφερόμενων υπηρεσιών και προϊόντων

Πρέπει να επισημανθεί ότι παρουσιάζονται έντονες διαφοροποιήσεις στα προϊόντα, και αυτό δίνει στις εταιρίες προσταθείν να ξεχωρίσουν και να τραβήξουν όσο το δυνατόν μεγαλύτερο μερίδιο της αγοράς των χρηστών κάνοντας προσαρμογές του λογισμικού για τις ανάγκες κάθε εταιρίας ξεχωριστά (customization), με σκοπό να τους διατηρήσουν ως πελάτες (lock-in). Είναι αρκετές εκείνες που προσπαθούν να δώσουν προστιθέμενη αξία (added value) στα προϊόντα τους δημιουργώντας κλειστές ναυτιλιακές αγορές, και ενοποίηση με εφαρμογές ανταγωνιστικός τους. Χρησιμοποιούν προγραμματιστές προκειμένου να συνδέσουν ή να υπάρχουν εφαρμογές που χρησιμοποιούν την εταιρία καθώς και να καλύψουν τις ανάγκες που δημιουργούνται στην πορεία ανάπτυξης του λογισμικού τους.
Τριτον Πρόοδος στην τυποποίηση ροών εργασίας και εγγράφων

Με την χρήση κοινών προτύπων όπως η MTML πολλές συναλλαγές θα τυποποιηθούν, συνεπώς η χρήση των διαδικτυακών εφαρμογών θα βρουν πρόσφορο έδαφος να εισχωρήσουν στις ναυτιλιακές διαδικασίες και συναλλαγές, οδηγώντας στον μεγαλύτερο δυνατό εκσυγχρονισμό των ναυτιλιακών εταιριών σε όλα τα δυνατά επίπεδα λειτουργίας και διασύνδεσης πλοίου – γραφείου.
Κεφάλαιο 5
Ανάλυση υφιστάμενης κατάστασης στην Ελλάδα

Στο παρόν κεφάλαιο θα επιδιωχθεί η αποτύπωση της υφιστάμενης κατάστασης στην Ελλάδα. Θα παρουσιαστεί το πλαίσιο λειτουργίας των ελληνικών ναυτιλιακών επιχειρήσεων (διαχειρίστριες εταιρίες) και το μέγεθος της συγκεκριμένης αγοράς. Στη συνέχεια θα συζητηθεί ο ρόλος των τηλεπικοινωνιών, των ηλεκτρονικών εφαρμογών και των ηλεκτρονικών αγορών. Θα γίνει αναφορά στις υφιστάμενες δυσκολίες ως προς την υιοθέτηση, και θα παρουσιαστούν τα αποτελέσματα του ερωτηματολογίου, θα συζητηθούν επίσης χαρακτηριστικές περιπτώσεις μελέτης στην Ελλάδα, καθώς και η διεθνής πρακτική ως προς τη διαχείριση ποντοπόρων πλοίων.

5.1 Ελληνικές ναυτιλιακές επιχειρήσεις (διαχειρίστριες εταιρίες)

Οι ελληνικές ναυτιλιακές επιχειρήσεις που δραστηριοποιούνται στον τομέα της ποντοπόρου ναυτιλίας, αποτελούνται στην συντριπτική πλειοψηφία τους από υπεράκτιες εταιρίες, οι οποίες βρίσκονται εγκατεστημένες στην Ελλάδα βάσει του νόμου 89/1967 που προσφέρει ευνοϊκό φορολογικό καθεστώς, και έχουν σαν αντικείμενο τη διαχείριση του στόλου των πλοίων ιδίων με αυτές συμφερόντων. Κατά αυτόν τον τρόπο, είναι δυνατή η προσέγγιση του συνολικού στόλου ελληνικής ιδιοκτησίας, και από την άλλη πλευρά είναι δύσκολο να συμπεριληφθούν τα πλοία ελληνικών συμφερόντων, η διαχείριση των οποίων ασκείται από εταιρίες εκτός Ελλάδος.

Ο ελληνόκτητος στόλος ανήλθε σε 2,923 πλοία με χωρητικότητα άνω των 1000 GRT σύμφωνα με στοιχεία του Ιουλίου 2004, περιλαμβάνοντας 857 δεξαμενόπλοια, 1334 πλοία μεταφοράς ξηρού φορτίου, 157 πλοία Container και 575 πλοία διαφόρων τύπων. Κατείχε δε την πρώτη θέση σε παγκόσμιο επίπεδο με ποσοστό 10%, μπροστά από την Ιαπωνία, τη Γερμανία, την Κίνα και τη Νορβηγία.
Ηλεκτρονικές Υπηρεσίες και Εφαρμογές στη Ναυτιλία: Ισχύουσα Κατάσταση και Προοπτικές

Κατανομή παγκόσμιου εμπορικού στόλου ως προς την ιδιοκτησία

Πηγή: Lloyds Register Fairplay

Σύμφωνα με την παρουσίαση της Petrofin Research April 2004, ο αριθμός των ναυτιλιακών εταιριών διαχείρισης πλοίων εγκατεστημένων στην Ελλάδα ανήλθε το 2004 σε 733, ενώ ο αντίστοιχος αριθμός το έτος 1998 ανέρχονταν σε 928. Η κατανομή των παραπάνω εταιριών το 2004 και το 1998 ως προς το αριθμό των υπό διαχείριση πλοίων έχει ως εξής:

<table>
<thead>
<tr>
<th>Πλοία υπό διαχείριση</th>
<th>Ανω των 25</th>
<th>24 πλοία</th>
<th>15 πλοία</th>
<th>πλοία</th>
<th>5 πλοία</th>
</tr>
</thead>
<tbody>
<tr>
<td>Αριθμός εταιριών 2004</td>
<td>31</td>
<td>36</td>
<td>59</td>
<td>141</td>
<td>466</td>
</tr>
<tr>
<td>Ποσοστό</td>
<td>4,23%</td>
<td>4,90%</td>
<td>8,06%</td>
<td>19,24%</td>
<td>63,65%</td>
</tr>
<tr>
<td>Αριθμός εταιριών 1998</td>
<td>19</td>
<td>11</td>
<td>68</td>
<td>149</td>
<td>679</td>
</tr>
<tr>
<td>Ποσοστό</td>
<td>2,05%</td>
<td>1,19%</td>
<td>7,34%</td>
<td>16,09%</td>
<td>73,33%</td>
</tr>
</tbody>
</table>

Αντίστοιχα, η κατανομή των ως άνω εταιριών το 2004 ως προς το μέσο όρο ηλικίας των υπό διαχείριση πλοίων έχει ως εξής:

<table>
<thead>
<tr>
<th>Ηλικία στόλου υπό διαχείριση</th>
<th>Ανω των 20 ετών</th>
<th>Μεταξύ 15-19 ετών</th>
<th>Μεταξύ 10-14 ετών</th>
<th>Κάτω από 10 έτη</th>
</tr>
</thead>
<tbody>
<tr>
<td>Αριθμός εταιριών</td>
<td>506</td>
<td>106</td>
<td>65</td>
<td>56</td>
</tr>
<tr>
<td>Ποσοστό</td>
<td>69%</td>
<td>14%</td>
<td>9%</td>
<td>8%</td>
</tr>
</tbody>
</table>
5.2 Ο ρόλος των τηλεπικοινωνιών στη διαχείριση ποιντοπόρων πλοίων

Οι διαχειριστές εταιρείες, που δραστηριοποιούνται στην ναυτιλία χύδην ποιντοπών, συνήθως έχουν μικρό αριθμό προσωπικού και μεγάλο δίκτυο από ανθρώπους ανά τον κόσμο που συνεργάζονται, κατά συνέπεια υπάρχει ανάγκη για επικοινωνία και παροχή συνεχούς πληροφόρησης.

Προκειμένου οι εταιρείες να καλύψουν τόσο τις πληροφοριακές ύσσω και τις συναλλακτικές τους ανάγκες δημιουργούν εταιρικές ιστοσελίδες. Η μορφή τους μπορεί να έχει από πληροφοριακό χαρακτήρα / διαφημιστικό έως και συναλλακτικό. Σκοπός της δημιουργίας τους είναι επίσης και η κάλυψη εσωτερικών επιχειρησιακών αναγκών, όπως είναι η δυνατότητα πρόσβασης στο δίκτυο της εταιρείας από οποιοδήποτε μέρος του κόσμου για την λήψη και αποστολή μηνυμάτων.

Η διαχείριση του κόστους των προμηθειών είναι ένας άλλος τομέας όπου υπάρχει ανάγκη για συστήματα επικοινωνίας που μπορούν να διευκολύνουν στην καλύτερη διαχείριση των προμηθειών και του κόστους αυτών. Το εμπορικό πλοίο βρίσκεται σε μια συνεχή διαδρομή σε διάφορα λιμάνια του κόσμου με συνέπεια η οργάνωση των προμηθειών του να είναι μια περίπλοκη διαδικασία, η οποία απαιτεί άμεση γνώση των αναγκών του πλοίου και δυνατότητα για γρήγορη και με χαμηλό κόστος αναπλήρωσης των ελλείψεων.

Ο σημαντικότερος ρόλος των τηλεπικοινωνιών στη διαχείριση ποιντοπόρων πλοίων αφορά όμως στην τηλεπικοινωνιακή υποδομή επί του πλοίου, αφού σχετίζεται με την κάλυψη των γενικών αναγκών για επικοινωνία αλλά και την επιτυχή αντιμετώπιση καταστάσεων ανάγκης, μεταξύ πλοίου-ξηράς αλλά και μεταξύ δύο πλοίων, όπως έχει καθοριστεί από τη συνθήκη SOLAS και το σύστημα GMDSS (Global Maritime Distress and Safety System). Ο τηλεπικοινωνιακός εξοπλισμός βάση του κανονισμού GMDSS υποστηρίζει ένα πλαίσιο συμβατικών υπηρεσιών όπως ραδιοτηλεπικοινωνίες, αμφίδρομη τηλεφωνία, τηλεομοιοτυπία, telex, μηνύματα και τηλεειδοποίηση.

Ωστόσο οι εξελίξεις στην τηλεπικοινωνιακή αγορά και οι αυξανόμενες ανάγκες των χρηστών, στα πλαίσια της αποτελεσματικότερης διαχείρισης, απαιτούν ένα διευρυμένο φάσμα υπηρεσιών μεταφοράς δεδομένων και πολυμέσων καθώς και ολοένα μεγαλύτερο
Ηλεκτρονικές Υπηρεσίες και Εφαρμογές στη Ναυτιλία: Ισχύουσα Κατάσταση και Προοπτικές

εύρος, προκειμένου να υποστηρίξουν οι νεότερες εφαρμογές, οι οποίες σχετίζονται με
τη μορφή της υπηρεσίας (π.χ., από την χρήση telex και τηλεομοιοτυπίας στο ηλεκτρονικό
tαχυδρομείο και την αποστολή μεγάλου μεγέθους αρχείων), την εγκατάσταση και
ολοκλήρωση των πληροφοριακών συστημάτων επί του πλοίου και την αύξηση της
ανταλλαγής δεδομένων με τη ξηρά.

Οι τηλεπικοινωνιακές ανάγκες του πλοίου αφορούν κατά κύριο λόγο στην ανταλλαγή
πληροφοριών με την διαχείριστρια εταιρία, αλλά επίσης και με μια σειρά από άλλους
φορείς που συνδέονται με την λειτουργία του, όπως οι ναυλωτές, οι λιμενικές άρχες, οι
πράκτορες, οι προμηθευτές, οι ιδιοκτήτες του φορτίου και οι ασφαλιστικές εταιρίες.
Αντίστοιχα, τα δεδομένα που ανταλλάσσονται περιλαμβάνουν την αναφορά θέσης,
πληροφορίες για την πλοήγηση, αναφορές στα πλαίσια του ISM, πληροφορίες σχετικά
με αγορές και προμήθειες, πληροφορίες για την λειτουργία του πλοίου και ECDIS
(Electronic Chart Display Information System).

Οι παραπάνω πληροφορίες ανταλλάσσονται με τη μορφή φωνής, telex, τηλεομοιοτυπίας
και δεδομένων (data), τα οποία περιλαμβάνουν από απλό κείμενο (plain text) και κείμενο
Word μέχρι παρουσίασεις Powerpoint και πολυμέσα όπως εικόνες, ήχος και video. Στην
παρούσα φάση, στην πλειοψηφία των πλοίων υπό ελληνική ιδιοκτησία βρίσκεται
eγκατεστημένο το σύστημα Inmarsat B, που προσφέρει ταχύτητες 9.6 – 64 Kbps και το
Inmarsat C με ταχύτητες <600 Kbps, τα οποία προβλέπονται από το GMDSS, και
eπιπλέον το σύστημα Inmarsat Mini-M, με ταχύτητα 2.4Kbps, λόγω του χαμηλού
cόστους εγκατάστασης και χρήσης του. Μέσω αυτών των συνδέσεων, είναι δυνατή η
ανταλλαγή μέχρι και απλών κειμένων.

Με τη βελτίωση των συστημάτων επικοινωνίας που υπάρχουν πάνω στο πλοίο
και τη μείωση του κόστους λειτουργίας αυτών τα μέλη του πληρώματος μπορούν να
έχουν πρόσβαση στην αντίστοιχη πληροφόρηση με αυτή που έχουν οι άνθρωποι που
σχολούνται με τη διαχείριση του πλοίου από το γραφείο και να συμβάλουν στη λήψη
αποφάσεων για τη διαχείριση.

Σε σημαντικό αριθμό νεότευκτων πλοίων ελληνικής ιδιοκτησίας, υιοθετείται πλέον
το σύστημα Fleet 77, το οποίο προσφέρει ταχύτητες έως 128 Kbps και χρέωση βάση του
μεταφερόμενου όγκου πληροφορίας και όχι του χρόνου, διευκολύνοντας έτσι τη μεταφορά
ικανού όγκου δεδομένων και κυρίως τη δομωροφική σύνδεση του πλοίου με το Internet
καθώς και τη δυνατότητα σύνδεσης με το εταιρικό δίκτυο.
5.3 Ο ρόλος των ηλεκτρονικών εφαρμογών

Αναμφισβήτητα τα τελευταία χρόνια, η εφαρμογή νέων τεχνολογιών στις Ελληνικές ναυτιλιακές εταιρίες εξελίσσεται ραγδαία. Νέες ανάγκες που επιβάλλονται είτε από τις συνθήκες της αγοράς είτε από τους νέους κανονισμούς που ισχύουν για τις εταιρίες και τα πλοία, επιβάλλουν την καλύτερη οργάνωση των διαχειριστριών εταιριών καθώς και των τμημάτων που λειτουργούν μέσα σε αυτές. Η χρήση νέων τηλεπικοινωνιακών τεχνολογιών για την επικοινωνία κυρίως πλοίου - γραφείου οδήγησε και στον μεγάλο όγκο ανταλλαγής δεδομένων. Το κατάλληλο όμως λογισμικό - και οι ενοποιημένες ηλεκτρονικές υπηρεσίες, είναι αυτό που θα επεξεργαστεί τα δεδομένα και θα δώσει στις ναυτιλιακές εταιρίες την δυνατότητα να πάρουν δυνημικές αποφάσεις για την διαχείριση του πλοίου.

Μεγάλες ναυτιλιακές εταιρίες προέβησαν οι ίδιες στη δημιουργία εξειδικευμένου λογισμικού. Εξελίχθησαν εσωτερικά (Inhouse) της εταιρίας την προστάθεια ανάπτυξης λογισμικού, η οποία οδήγησε στην δημιουργία νέων εταιριών εξειδικευμένου ναυτιλιακού λογισμικού. Το πλεονέκτημα του εγχειρήματος για τις εταιρίες ήταν ότι χρησιμοποίησαν πρώτες το λογισμικό στην πράξη με εμφανή θετικά αποτελέσματα για τις υπόλοιπες, δίνοντας το ένανσαμα και στις υπόλοιπες για τη χρήση εξειδικευμένου λογισμικού. Το ανταγωνιστικό πλεονέκτημα του λογισμικού σχετίζεται με το γεγονός ότι οι εταιρίες που το κατασκεύασαν είχαν άριστη γνώση της ναυτιλιακής αγοράς καθώς και των διαδικασιών μέσα στις ναυτιλιακές εταιρίες με αποτέλεσμα να δώσουν λύση σε πολλά προβλήματα που αντιμετώπιζαν καθημερινά τα στελέχη.

Ένας άλλος σημαντικός ρόλος για την ανάπτυξη των ηλεκτρονικών εφαρμογών ήταν η ανάγκη για εσωτερικό έλεγχο της διαχειρίστριας εταιρίας. Αρχικά αναπτύχθηκαν λύσεις λογιστηρίου και εν συνεχεία λύσεις και για τα υπόλοιπα τμήματα της εταιρίας. Οι τελευταίες έχουν ως στόχο, δεδομένης της ανάπτυξης των τηλεπικοινωνιακών συστημάτων, να διαμορφώσουν το πλοίο ως προέκταση του γραφείου και όλα τα στελέχη να λειτουργούν σε ένα εταιρικό δίκτυο.

Στην Ελληνική πραγματικότητα οι εταιρίες ναυτιλιακού λογισμικού αρχίζουν να μπαίνουν στην καθημερινή ζωή των ναυτιλιακών εταιριών αποτελώντας απαραίτητο συνεργάτη. Αυτό μπορεί εύκολα να φανεί από την μεγάλη πελατειακή βάση που έχουν οι εταιρίες παροχής λύσεων και η οποία συνεχώς εξελίσσεται.

Υπάρχουν δυο κατηγορίες εταιριών παροχής εξειδικευμένου ναυτιλιακού λογισμικού στην Ελλάδα. Την πρώτη κατηγορία αποτελούν εταιρίες οι οποίες παρέχουν
Ελεκτρονικές Υπηρεσίες και Εφαρμογές στη Ναυτιλία: Ισχύουσα Κατάσταση και Προοπτικές

ολοκληρωμένες λύσεις στους πελάτες τους, διασυνδέοντας επιτυχώς το πλοίο με το γραφείο και προσπαθώντας να εκμεταλλευτούν στο έπακρο τις νέες τηλεπικοινωνιακές τεχνολογίες. Στην δεύτερη κατηγορία ανήκουν εταιρείες οι οποίες προσπαθούν να καλύψουν με το λογισμικό τους βασικές ανάγκες των ναυτιλιακών εταιριών και οι οποίες έχουν μεγάλο βαθμό εξειδίκευσης. Πρέπει να τονίσουμε ότι σημαντικό ρόλο στην επιλογή των λύσεων λογισμικού παίζει το μέγεθος, η οργάνωση της εταιρίας, ο αριθμός των πλοίων που διαχειρίζεται καθώς και η τεχνολογική κουλτούρα των στελεχών που λαμβάνουν αποφάσεις για την επενδυτική στρατηγική που ακολουθεί η εταιρία.

Παρατηρείται ότι ναυτιλιακές εταιρείες που έχουν μεγάλο αριθμό πλοίων προς διαχείριση, προτιμούν τις ολοκληρωμένες λύσεις εφαρμογών. Αντίθετα οι εταιρείες με λίγα πλοία πιστεύουν ότι μπορούν να πραγματοποιήσουν πολλές εργασίες με τους παραδοσιακούς τρόπους και επενδύουν σε μεμονωμένες εφαρμογές. Στις μεν πρώτες παρατηρείται η παρουσία IT department, ενώ στις δεύτερες η παρακολούθηση του τεχνολογικού εξοπλισμού της εταιρίας και του λογισμικού που χρησιμοποιεί γίνεται εξωτερικά (outsourced).

Η αύξηση της χρήσης των ναυτιλιακών εφαρμογών στην ελληνική ναυτιλία αδιαμφισβήτητα οδηγεί στην βελτίωση της ποιότητας των προσφερόμενων υπηρεσιών προς τους πελάτες τους, τον ποιοτικό έλεγχο των πλοίων και του γραφείου, την αύξηση της παραγωγικότητας με την επιτάχυνση των εργασιών και την μείωση του λειτουργικού κόστους.

Οι ελληνικές εταιρείες ναυτιλιακού λογισμικού και λύσεων παράγουν ανταγωνιστικά προϊόντα που δεν καλύπτουν μόνο την ελληνική αγορά, αλλά και την ναυτιλιακή αγορά του εξωτερικού. Έτσι σε πολλές περιπτώσεις εταιρείες ναυτιλιακών εφαρμογών εξάγουν τα προϊόντα τους και αποκτούν κύρος διεθνώς εμβέλειας. Η αγορά ναυτιλιακού λογισμικού ωριμάζει με γοργός ρυθμός και η ναυτιλιακή αγορά συνειδητοποιεί τα οφέλη χρήσης του, δημιουργώντας έτσι έναν ξεχωριστό ρόλο στις σύγχρονες επιχειρησιακές διαδικασίες.

5.4. Ο ρόλος των ηλεκτρονικών αγορών
Οι ηλεκτρονικές ναυτιλιακές αγορές έχουν παρουσιαστεί από την αρχή της δεκαετίας σε παγκόσμιο επίπεδο, αλλά και σε ελληνικό. Η διαφορετικότητα και οι ιδιομορφίες που παρουσιάζονται στην ναυτιλιακή αγορά και στους τομείς δραστηριοποίησης των εταιριών καθόρισαν και την βιωσιμότητα των ηλεκτρονικών αυτών αγορών. Στους ελληνικούς ναυτιλιακούς κύκλους υπήρχε και υπάρχει ακόμα έντονος σκέπτικισμός για την χρησιμοποίησή τους, καθώς δεν έχει κατανοηθεί η εφαρμογή της διαδικτυακής.
Ηλεκτρονικές Υπηρεσίες και Εφαρμογές στη Ναυτιλία: Ισχύουσα Κατάσταση και Προοπτικές

Τεχνολογίας στις δραστηριότητες της επιχείρησης, η σχέση που θα υπάρχει μεταξύ των συναλλασσόμενων μερών, καθώς και ο άριστος τρόπος εκμετάλλευσης των ηλεκτρονικών αυτών αγορών. Οι συναλλαγές στον μεγαλύτερο βαθμό συντελούνται με παραδοσιακούς τρόπους (fax, τέλες και τηλέφωνο), αν δημιουργήθηκε ένα μοντέλο όπου οι σχέσεις υφίστανται και κατανοηθεί ότι θα αλλάξει μόνο ο τρόπος συναλλαγής, τότε ίσως υιοθετηθούν οι τεχνολογίες αυτές και από τους πιο δύσπιστους εμπλεκόμενους στις ναυτιλιακές και μεταφορικές υπηρεσίες.

Είναι γνωστό ότι μια ηλεκτρονική αγορά περιλαμβάνει όλους ακέραιους ολοκλήρωσης της συναλλαγής, συμπεριλαμβανομένης και της πληρωμής των προσφερόμενων υπηρεσιών. Δηλαδή από την παραγγελία μέχρι την παραλαβή και την αποπληρωμή των τιμολογίων. Αυτό δεν διαφαίνεται να γίνεται στις ηλεκτρονικές αγορές που ασχολούνται με τον εφοδιασμό και την πώληση ανταλλακτικών, το οποίο αποτελεί σημαντικό στοιχείο των καθαρών ηλεκτρονικών αγορών. Οι ηλεκτρονικές ναυτιλιακές αγορές λειτουργούν ως πηγές πληροφόρησης για τους εμπλεκόμενους και διαφαίνεται ότι διαδικτυακές συναλλαγές δεν πραγματοποιούνται.

Ο αριθμός των εταιριών που δραστηριοποιούνται στο εξωτερικό στις ηλεκτρονικές ναυτιλιακές αγορές δεν θα μπορούσε να θεωρηθεί ικανοποιητικός, κρίνοντας από τον μεγάλο αριθμό εταιριών που δραστηριοποιούνται στην ναυτιλική βιομηχανία. Τα μοντέλα των ναυτιλιακών ηλεκτρονικών αγορών καθώς και οι υπηρεσίες που προσφέρονται από αυτά παρουσιάζουν αρκετές διαφοροποιήσεις. Πρέπει ίσως να ληφθεί υπόψη ότι υπάρχουν πολλές μικρομεσαίες επιχειρήσεις που δραστηριοποιούνται και δεν έχουν τα απαραίτητα κεφάλαια αλλά και την τεχνολογική κατάρτιση στο να προβούν σε ισχύνη νέων τεχνολογιών. Ίσως να είναι αδύνατη ή ασύμφορη η ικανοποίηση των αναγκών όλης της μεταφορικής βιομηχανίας.

Είναι γεγονός ότι οι τεχνολογικές εξελίξεις στον τομέα της ηλεκτρονικής εφοδιαστικής και της τυποποίησης των εγγράφων έχει σημείωσει μεγάλη πρόοδο, όπως επίσης και η διασύνδεση των πλοίων με τις ναυτιλιακές εταιρείες με την χρήση των νέων τηλεπικοινωνιακών συστημάτων. Όμως οι υπεύθυνοι των πληροφοριακών συστημάτων στις ναυτιλιακές είναι σκεπτικοί στον τρόπο μετάβασης της εταιρείας στην νέα εποχή των διαδικτυακών εφαρμογών και τεχνολογιών, τόσο λόγω του τρόπου ισχύσης τους, όσο και για το κόστος εγκατάστασης και το χρόνο αποτελεσμάτων της επένδυσης (Return on Investment).

Στην Ελλάδα δημιουργήθηκε ηλεκτρονική αγορά με μικρό χρόνο ζωής. Έγιναν προσπάθειες από τους ιδρυτές προσέλκυσης κεφαλαίων από ναυτιλιακές διαχειριστικές εταιρείες, χωρίς ιδιαίτερη ανταπόκριση.
Για την δημιουργία ναυτιλιακών αγορών πρέπει να ισχύουν προϋποθέσεις τόσο για τις διαχειριστρίες ναυτιλιακές εταιρίες όσο και για τους προμηθευτές τους. Οι προϋποθέσεις αυτές αφορούν τόσο τον τρόπο συναλλαγών μεταξύ τους, όσο και την πληροφορία των πληροφοριών. Σε διεθνείς επίπεδο έχουν γίνει προσπάθειες με την ανάπτυξη λογισμικού και την διασύνδεση διαχειριστών-προμηθευτών, χωρίς όμως να έχουν υιοθετηθεί από την ελληνική ναυτιλιακή αγορά.

5.5 Οι υφιστάμενες δυσκολίες ως προς την υιοθέτηση

Τα κύρια εμπόδια, τα οποία αντιμετωπίζει η ναυτιλική βιομηχανία ως προς την υιοθέτηση από τις ναυτιλιακές επιχειρήσεις των υπαρχουσών ηλεκτρονικών υπηρεσιών και λύσεων συνοψίζονται στα εξής:

- Το υψηλό μέχρι σήμερα κόστος των υφιστάμενων δορυφορικών τηλεπικοινωνιακών υπηρεσιών, το οποίο όμως αναμένεται να μειωθεί λόγω του ανταγωνισμού.
- Το χαμηλό μέχρι σήμερα εύρος των δορυφορικών υπηρεσιών με αποτέλεσμα την επιβολή περιορισμών στη διαχείριση του ολοένα αυξανόμενου όγκου πληροφορίας που ανταλλάσσεται μεταξύ ήχων και πλοίων. Η έλευση των ευρυζωνικών συνδέσεων το προσεχές διάστημα αναμένεται να δώσει λύση.
- Η έλλειψη προτύπων στις ψηφιακές φόρμες (standards) που περιορίζει τα πλεονεκτήματα που θα ανακύψουν για τις ναυτιλιακές επιχειρήσεις από την υιοθέτηση ηλεκτρονικών λύσεων θα επιτρέψει την ανάπτυξη ολοκληρωμένων λύσεων.
- Η επιφυλακτική στη λύση του χαμηλού επιπέδου πληροφόρησης και εκπαίδευσης, και κατ’ επέκταση μικρή αποδοχή των νέων τεχνολογιών.
- Τα αβέβαια αποτελέσματα, τουλάχιστον στο αρχικό στάδιο, ως προς την ελάττωση του κόστους με την υιοθέτηση ηλεκτρονικών εφαρμογών.

Τα τελευταία χρόνια γίνονται μεγάλες προσπάθειες για την ενημέρωση των ναυτιλιακών εταιριών για την ύπαρξη μεγάλου εύρους προϊόντων που αφορούν τόσο τις τηλεπικοινωνίες όσο και τις ηλεκτρονικές εφαρμογές. Η υιοθέτηση τους βρίσκεται πάντα στην κρίση του επικεφαλής της διαχειριστρίας εταιρίας και σε μερικές περιπτώσεις του IT μάνατζερ της.

Όπως αναφέραμε και σε προηγούμενο κεφάλαιο, η υιοθέτηση μιας λύσης συνδέεται άμεσα με το μέγεθος της εταιρίας. Συνεπώς οι μικρομεσαίες εταιρίες δεν αναλαμβάνουν
μεγάλες επενδύσεις, αφού δεν βλέπουν να δημιουργούνται οικονομίες κλίμακας που θα
dικαιολογούσαν και μια τέτοια μεγάλη επένδυση.

Ένας άλλος λόγος που δυσκολεύει την υιοθέτηση τέτοιων τεχνολογιών είναι η
στρατηγική που ακολουθεί η εταιρία. Είναι γνωστό ότι οι ελληνικές ναυτιλιακές εταιρίες
μπορούν να μεταβάλλουν τον αριθμό των πλοίων τους και να συρρικνώσουν σε
dύσκολες περιοχές όπου όμως το κέρδος από την πώληση ενός πλοίου μπορεί να
είναι πολλαπλασιαστικά μεγαλύτερο από τη δραστηριοποίησή του. Ακόμα και η
τοποθέτηση νέων τεχνολογιών πάνω στο πλοίο δεν αυξάνει την αξία μεταπώλησης,
καθώς αυτές οι τεχνολογίες δεν προσφέρουν ακόμα προστιθέμενη αξία για τους
επόμενους αγοραστές.

Επίσης σημαντικό ρόλο παίζει και η υιοθέτηση ενός διεθνούς στάνταρ ανταλλαγής
dedomένων μεταξύ των εταιριών. Πρέπει για την χρήση ορισμένων τεχνολογιών και
ιδιαίτερα διαδικτυακών, να αναπτυχθούν και να εξετασθούν ενοποιημένοι τρόποι
ανταλλαγής dedomένων, όπως είναι η MTML για την ηλεκτρονική εφοδιαστική. Με την
dημιουργία προτύπων η χρήση ηλεκτρονικών ναυτιλιακών αγορών θα αποκτήσει νόημα
για τις ναυτιλιακές εταιρίες.

5.6 Έρευνα Πεδίου

Για τους ακοπούς της έρευνάς μας δημιουργήσαμε ένα ερωτηματολόγιο, το οποίο
απευθύνθηκε σε χρήστες ή δυνητικούς χρήστες, και συγκεκριμένα στις διαχειριστικές
εταιρίες πολτοπόρων πλοίων, οι οποίες αποτελούν και την πλειοψηφία των ναυτιλιακών
εταιριών στην Ελλάδα. Η πρόσκληση για τη συμπλήρωση του ερωτηματολόγιου
(παράρτημα Δ) αποστάλθηκε στα σχετικά μέλη της Η1 καθώς και σε περίπου 300
dιαχειριστικές εταιρείες στην Ελλάδα. Ο αριθμός των εταιριών που απάντησαν το
ερωτηματολόγιο ήταν 13 και το δείγμα παρουσίασε μεγάλη διασπορά αναφορικά με το
μέγεθος των ναυτιλιακών εταιριών. Ως μέγεθος εννοούμε τον αριθμό των πλοίων που
dιαχειρίζεται κάθε εταιρία και ο συνολικός τους αριθμός είναι 176 πλοία.

Ανάλυση ερωτηματολογίου

Τύποι Πλοίων

Σύμφωνα με τις απαντήσεις που δόθηκαν από τις διαχειριστικές εταιρείες, τα είδη των
πλοίων που βρίσκονται υπό την διαχείρισή τους και ο αριθμός τους είναι ο ακόλουθος:

- Bulk carriers 48
Ηλεκτρονικές Υπηρεσίες και Εφαρμογές στη Ναυτιλία: Ισχύουσα Κατάσταση και Προοπτικές

- Crude tankers/ Product carriers 109 + 13
- Container ships 1
- Reefer 4
- Ro-Ro 1

Τύποι Πλοίων που διαχειρίζονται οι ερωτηθείσες διαχειρίστριες εταιρίες

<table>
<thead>
<tr>
<th>Τύπος Πλοίου</th>
<th>Ποσοστό</th>
</tr>
</thead>
<tbody>
<tr>
<td>Crude tankers/ Product carriers</td>
<td>62%</td>
</tr>
<tr>
<td>Reefer</td>
<td>2%</td>
</tr>
<tr>
<td>Container ships</td>
<td>1%</td>
</tr>
<tr>
<td>Bulk carriers</td>
<td>27%</td>
</tr>
<tr>
<td>Ro-Ro</td>
<td>1%</td>
</tr>
</tbody>
</table>

Εξειδικευμένο Προσωπικό σε Θέματα Μηχανογράφησης

Το 77% των εταιριών απασχολούν εξειδικευμένο προσωπικό και έχουν τμήμα που ασχολείται αποκλειστικά με την μηχανογράφηση και μηχανογράφηση της εταιρίας. Το 23% δεν απασχολεί κάποιο άτομο εξειδικευμένο στην πληροφορική, αλλά χρησιμοποιεί κάποιον εξωτερικό συνεργάτη για την κάλυψη των αναγκών του.

Οχι 23%

Ναι 77%
Ηλεκτρονικές Υπηρεσίες και Εφαρμογές στη Ναυτιλία: Ισχύουσα Κατάσταση και Προοπτικές

Λήψη Αποφάσεων στις Εταιρίες για Επενδύσεις σε Θέματα Τηλεπικοινωνιών και Πληροφορικής

Οι αποφάσεις στις εταιρίες για επενδύσεις που αφορούν τεχνολογίες τηλεπικοινωνιών και πληροφορικής όπως φαίνεται και στο παρακάτω διάγραμμα λαμβάνονται μόνο από τους General Managers σε ποσοστό 62% επί του συνόλου των εταιριών και μόνο από τους IT Managers σε ποσοστό 38%. Συμπεραίνουμε ότι τις αποφάσεις για νέες επενδύσεις τις λαμβάνει ο Γενικός Διευθυντής που σε πολλές περιπτώσεις είναι και ο ίδιος ο εφοπλιστής, ακόμα και εάν η εταιρία έχει τμήμα πληροφορικής με εξειδικευμένο προσωπικό. Τότε η πρόταση γίνεται από τον ICT Manager στον General Manager για την λήψη της απόφασης.

![Diagram](image.png)

Inhouse – Outsourcing Παρακολούθησης Εξοπλισμού και Εφαρμογών

Πολλές εργασίες που αφορούν το εταιρικό δίκτυο, καθώς και την παρακολούθηση των ηλεκτρονικών υπολογιστών (hardware) και του λογισμικού (software) που χρησιμοποιείται στην εταιρία και τα πλοία αναλαμβάνονται εσωτερικά (in-house) από σχετικό τμήμα ή/και έχουν ανατεθεί σε εξωτερικούς συνεργάτες (outsourcing).

- Τεχνική Υποστήριξη Hardware

Όπως φαίνεται στο παρακάτω γράφημα, σύμφωνα με τις απαντήσεις που δόθηκαν, η τεχνική υποστήριξη του hardware γίνεται στο 46% των εταιριών εσωτερικά, στο 23% εξωτερικά και στο 31% σε συνδυασμό και των δυο.
Ηλεκτρονικές Υπηρεσίες και Εφαρμογές στη Ναυτιλία: Ισχύουσα Κατάσταση και Προοπτικές

Τεχνική Υποστήριξη Hardware

- Λειτουργικά συστήματα & γενικές εφαρμογές (π.χ. κειμενογράφοι)
- Εξειδικευμένες ηλεκτρονικές εφαρμογές για τη Ναυτιλία

Το λογισμικό που χρησιμοποιούν οι διαχειριστές εταιρείες στο γραφείο και στα πλοία τους μπορούμε να το διαχωρίσουμε σε δύο κατηγορίες.

- Τεχνική Υποστήριξη Software (Λειτουργικό σύστημα/ Γενικές εφαρμογές)
 Το 46% των ναυτιλιακών χρησιμοποιούν το υπάρχον εξειδικευμένο προσωπικό για την εγκατάσταση και συντήρηση των λειτουργικών συστημάτων εντός της εταιρίας. Το 31% χρησιμοποιεί εξωτερικούς συνεργάτες για αυτό τον σκοπό, ενώ το 23% χρησιμοποιεί και εσωτερικούς και εξωτερικούς συνεργάτες.

- Τεχνική Υποστήριξη Software (Εξειδικευμένες ηλεκτρονικές εφαρμογές για τη Ναυτιλία)
Οι εξειδικευμένες ηλεκτρονικές εφαρμογές αναπτύσσονται είτε μέσα στην ίδια την εταιρία είτε παρέχονται από παρόχους λογισμικού. Είναι συνεπώς λογικό το μεγαλύτερο ποσοστό των εταιριών, το 69%, να χρησιμοποιεί την τεχνική υποστήριξη που παρέχουν οι πάροχοι για την συντήρηση των εφαρμογών αυτών. Οι εταιρίες οι οποίες αναπτύσσουν συστήματα σε συνεργασία με παρόχους έχουν την δυνατότητα να υποστηρίζουν τις εφαρμογές εσωτερικά και εξωτερικά, ανάλογα με τον βαθμό ανάγκης.

![Τεχνική Υποστήριξη Software](image)

- **Τεχνική Υποστήριξη Εταιρικού Δικτύου**

Την τεχνική υποστήριξη του εταιρικού δικτύου, την πραγματοποιούν κατά κύριο λόγο τα τμήματα πληροφορικής των εταιριών (62%). Ένα μικρότερο ποσοστό (23%) γίνεται από εξωτερικούς συνεργάτες εξαιτίας της υψηλής εξειδίκευσης που χρειάζεται για την συντήρηση του τεχνικού υλικού των δικτύων και ένα 15% πραγματοποιείται σε συνδυασμό και των δυo.
Ηλεκτρονικές Υπηρεσίες και Εφαρμογές στη Ναυτιλία: Ισχύουσα Κατάσταση και Προοπτικές

- Τεχνική Υποστήριξη Εταιρικών Web εφαρμογών

Δευτερευούσης σημασίας στις ναυτιλιακές εταιρίες είναι η ύπαρξη εταιρικών διαδικτυακών εφαρμογών. Σε αυτή την κατηγορία ανήκουν οι ιστοσελίδες που έρχονται να καλύψουν την διαδικτυακή παρουσία της διαχείριστριας εταιρίας και να παρουσιάζουν τις προσφερόμενες υπηρεσίες της, καθώς επίσης και τις ιδιες ανάγκες της εταιρίας για απομακρυσμένη σύνδεση των στελεχών της με την εταιρία. Η ανάπτυξη των εφαρμογών αυτών γίνεται 31% εσωτερικά, καθώς επίσης και εξωτερικά, ενώ σε ποσοστό 38% οι διαχειρίστριες εταιρίες δεν έχουν διαδικτυακή παρουσία.

Χρήση Εξειδικευμένου Λογισμικού

Εντοπίσαμε 16 ναυτιλιακές διαδικασίες/εργασίες, οι οποίες έχουν αναλυθεί σε προηγούμενο κεφάλαιο, για της οποίες οι ναυτιλιακές δύναται να χρησιμοποιήσουν
Ηλεκτρονικές Υπηρεσίες και Εφαρμογές στη Ναυτιλία: Ισχύουσα Κατάσταση και Προοπτικές

εξειδικευμένες εφαρμογές λογισμικού προκειμένου να διευκολύνθουν και τα ποσοστά χρήσης τους φαίνονται στον παρακάτω πίνακα:

<table>
<thead>
<tr>
<th>Εφαρμογή</th>
<th>Ποσοστό</th>
</tr>
</thead>
<tbody>
<tr>
<td>Communications (internal/external)</td>
<td>85%</td>
</tr>
<tr>
<td>Teleconference (Τηλεδιάσκεψη/Τηλεϊατρική)</td>
<td>15%</td>
</tr>
<tr>
<td>Inventory Control (Provisions/ Stores/Spares)</td>
<td>69%</td>
</tr>
<tr>
<td>Electronic Procurement / Ηλεκτρονικές Προμηθείες</td>
<td>38%</td>
</tr>
<tr>
<td>Διαχείριση ISM Code / ISPS</td>
<td>62%</td>
</tr>
<tr>
<td>Voyage Management / Διαχείριση Ταξιδίων</td>
<td>62%</td>
</tr>
<tr>
<td>Planned Maintenance / Ship Performance</td>
<td>62%</td>
</tr>
<tr>
<td>Crew / Human Resources</td>
<td>69%</td>
</tr>
<tr>
<td>Accounting / MGA</td>
<td>77%</td>
</tr>
<tr>
<td>Monitoring / Hull Maintenance</td>
<td>23%</td>
</tr>
<tr>
<td>SCADA (Supervisory Control And Data Acquisition)</td>
<td>0%</td>
</tr>
<tr>
<td>Training</td>
<td>38%</td>
</tr>
<tr>
<td>Insurance</td>
<td>23%</td>
</tr>
<tr>
<td>Loadicator</td>
<td>100%</td>
</tr>
<tr>
<td>Ship Investment Analysis</td>
<td>15%</td>
</tr>
<tr>
<td>Decision Support System</td>
<td>8%</td>
</tr>
<tr>
<td>S & P</td>
<td>0%</td>
</tr>
</tbody>
</table>

Κίνητρα Υιοθέτησης

Ακολούθως παρουσιάζεται η κατάταξη με σειρά προτεραιότητας των κινήτρων για την υιοθέτηση ηλεκτρονικών εφαρμογών από τις διαχειρίστριες εταιρίες (πέραν των απαιτούμενων από τις διεθνείς συμβάσεις).

1. Βελτίωση της ποιότητας υπηρεσιών
2. Αύξηση της αποδοτικότητας
3. Αύξηση της ασφάλειας
4. Βελτίωση του εσωτερικού ελέγχου
5. Μείωση του κόστους

Εμπόδια Υιοθέτησης Ηλεκτρονικών Εφαρμογών

Ακολούθως παρουσιάζεται η κατάταξη με σειρά προτεραιότητας των εμποδίων που θεωρούν σημαντικότερα σχετικά με την υιοθέτηση νέων ηλεκτρονικών εφαρμογών οι διαχειρίστριες εταιρίες:

1. Αρχικό κόστος εγκατάστασης
2. Έλλειψη αξιοπιστίας / αποτελεσματικής τεχνικής υποστήριξης
3. Ετήσιο λειτουργικό κόστος
Πληροφορίες που λαμβάνονται συστηματικά μέσω Διαδικτύου (Internet) από την εταιρία

Παρατηρήθηκε ότι γίνεται εκτετής χρήση του διαδικτύου από τις διαχειρίστριες εταιρείες για την άντληση πληροφοριών που αφορούν τις δραστηριότητές τους. Οι πληροφορίες που λαμβάνονται αφορούν τις τιμές των καυσίμων και λιπαντικών, τις καιρικές προγнώσεις, πληροφορίες για την αγορά στην οποία δραστηριοποιείται ο τύπος των πλοίων που διαχειρίζεται η εταιρία, τις τιμές των ναύλων, λεπτομέρειες για λιμένες, τιμές για ανταλλακτικά και προμήθειες και τέλος τιμές και πληροφορίες που αφορούν τις αγοροπωλησίες πλοίων. Το διαδίκτυο συνεπώς αποτελεί ένα σημαντικό εργαλείο στα χέρια των μάνατζερ για τις συνεχής πληροφόρησή τους και την λήψη αποφάσεων.

![Graph showing web-based market information services, S & P Information, Chartering Fixtures, Bunkering Information, Weather Forecasts, Ports’ Details, and Spare parts/Provisions/Stores Prices](image-url)
5.7 Χαρακτηριστικές περιπτώσεις μελέτης στην Ελλάδα

Στο παρόν κεφάλαιο θα αναφερθούμε σε δύο περιπτώσεις ναυτιλιακών διαχειριστικών εταιριών οι οποίες αποφάσισαν να μεταβάλουν και να αναπτύξουν τις ηλεκτρονικές τους εφαρμογές και τα συστήματα τους προκειμένου να καλύψουν ανάγκες που δημιουργήθηκαν.

ELETSON CORPORATION

Η ELETSON Corporation έχει στην ιδιοκτησία της έναν από τους πιο μεγάλους στόλους δεξαμενοπολιών σε παγκόσμιο επίπεδο μεταφοράς προϊόντων πετρελαίου. Ο στόλος της αποτελείται από 25 δεξαμενοπολιών διπλών τοιχωμάτων που έχουν παραδοθεί στην εταιρία μετά το 1989, και με μια συνολική χωρητικότητα 1,630,533 dwt.

Η διοίκηση της εταιρίας, αναγνωρίζοντας την ανάγκη αύξησης της ανταγωνιστικότητάς της ολοκλήρωσε το λογισμικό SunSystems για να έχει άμεση και αξιόπιστη πρόσβαση στις πληροφορίες επιχειρησιακής και οικονομικής φύσεως.

Η εταιρία επέλεξε την εγκατάσταση του χρηματοοικονομικού λογισμικού SunSystems σε συνεργασία με την NetU Hellas για την μηχανογράφηση των γραφείων της στην Ελλάδα σύμφωνα με τα πρότυπα Sarbanes-Oxley.

Το SunSystems είναι το ολοκληρωμένο διεθνές λογισμικό χρηματοοικονομικής και εμπορικής διαχείρισης που αντιπροσωπεύει σε Ελλάδα και Κύπρο η NetU και προσφέρει πλήρη συμβατότητα με τα Ελληνικά (Κ.Β.Σ.) και τα Διεθνή Λογιστικά Πρότυπα (GAAP, IAS, κ.α.).

Το SunSystems προσφέρει δυνατότητες επεξεργασίας, ανάλυσης και παρουσίασης των κρίσιμων επιχειρησιακών πληροφοριών, ασφάλεια και ευκολία στην χρήση, καθώς και διαφάνεια στις συναλλαγές σύμφωνα με τα πρότυπα Sarbanes-Oxley.

Ceres Hellenic Shipping Enterprises Ltd

Η Ceres Hellenic Shipping Enterprises Ltd. είναι μια από τις μεγαλύτερες διαχειριστικές ναυτιλιακές εταιρείες με πολλαπλές δραστηριότητες στο χώρο της ναυτιλίας. Από το 1998 έχει πιστοποιηθεί κατά ISO 9002 και ήταν η πρώτη ναυτιλιακή εταιρεία στον κόσμο που έλαβε πιστοποιητικό ISO 14001 που αφορά στην προστασία του περιβάλλοντος.

Η εταιρία λόγω του μεγάλου αριθμού πλοίων που διαχειρίζοταν, της δημιουργήθηκε η ανάγκη παρακολούθησης τόσο των διαδικασιών των παραγγελιών, όσο και του μεγάλου όγκου των τιμολογίων.
Η Ceres Hellenic Shipping Enterprises Ltd. σε συνεργασία με την εταιρεία παροχής υπηρεσιών πληροφορικής IBM Ελλάς ΑΕ, υλοποίησε επιτυχώς την εγκατάσταση και λειτουργία ενός ενοποιημένου πληροφοριακού περιβάλλοντος, βασισμένου στο σύστημα διαχείρισης επιχειρησιακών πόρων SAP R/3 και στα προϊόντα λογισμικού Lotus. Με την ολοκλήρωση του έργου, επιτεύχθηκε ο εκσυγχρονισμός της λειτουργικής και οργανωτικής υποδομής της και η βελτίωση του επιπέδου και του εύρους των υπηρεσιών που προσφέρει στους πελάτες της.

Το ενοποιημένο πληροφοριακό περιβάλλον, πρωτοποριακό στο χώρο της ναυτιλίας, διαχειρίζεται ζωτικές επιχειρησιακές λειτουργίες που καλύπτουν ευρύ φάσμα, από τη γενική λογιστική και τα πάγια ως τις προμήθειες και τη διαχείριση υλικών. Ο σχεδιασμός και η υλοποίηση του πραγματοποιήθηκαν με βάση τις λειτουργικές ανάγκες της Ceres και τις ειδικές απαιτήσεις της ναυτιλίας. Επιπλέον, οδήγησαν στην αναθεώρηση εσωτερικών επιχειρηματικών διαδικασιών της εταιρείας και στην υιοθέτηση «βέλτιστων πρακτικών» (best practices) που έχουν διαμορφωθεί στο SAP R/3 από την εφαρμογή του στις μεγαλύτερες πολυεθνικές εταιρείες.

Οι ιδιαιτερότητες της ναυτιλίας με τις δυσκολίες πρόσβασης σε απομακρυσμένους προορισμούς (εν πλω) σε όλο τον κόσμο, αντιμετωπίστηκαν με την ενοποίηση διαδικασιών στα πλοία και στη ξηρά. Οι διαδικασίες προμηθειών (αιτήσεις αγοράς - εντολές αγοράς) ξεκινούν από τα πλοία και ολοκληρώνονται στα γραφεία της Ceres στον Πειραιά (προσφορές προς τους προμηθευτές - παραγγελίες - καταχώρηση τιμολογίων), οδηγώντας σε σημαντική εξοικονόμηση χρόνου, αύξηση της παραγωγικότητας και αποτελεσματικότερη διαχείριση των πλοίων.
5.8 Η διεθνής πρακτική στις εταιρείες διαχείρισης

Σε διεθνές επίπεδο παρατηρούνται σημαντικές διαφορές σε σχέση με το μοντέλο οργάνωσης των ελληνικών συμφερόντων ναυτιλιακών επιχειρήσεων, το οποίο όπως προαναφέρθηκε περιλαμβάνει ένα σημαντικό αριθμό διαχειριστριών εταιρειών, κάθε μια από τις οποίες συνδέονται με έναν συγκεκριμένο φορέα και παρέχουν τις υπηρεσίες τους στο σύνολο των πλοίων ιδιοκτησίας του.

Η διεθνής πρακτική κινείται σε δύο βασικές εναλλακτικές κατευθύνσεις ως προς την οργάνωση και διαχείριση του στόλου, και κατ’ επέκταση στην υιοθέτηση ηλεκτρονικών εφαρμογών και υπηρεσιών.

5.8.1 Αύξηση μεγεθών μέσω εισαγωγής στις κεφαλαιαγορές

Η πρώτη περίπτωση αφορά στις μεγάλους μεγέθους ναυτιλιακές εταιρείες, εισηγμένες κατά κύριο λόγο σε χρηματιστηριακές αγορές, οι οποίες οδηγήθηκαν στην αύξηση των μεγεθών τους μέσω εξαγορών και συγχωνεύσεων. Το φαινόμενο αυτό παρατηρείται εντονότερα την τελευταία πενταετία, τόσο σε συνθήκες χαμηλής όσο και υψηλής ναυλογοράς, και έχει σαν αποτέλεσμα τη συγκέντρωση ενός σημαντικού τμήματος του παγκόσμιου στόλου, και κυρίως των δεξαμενόπλοιων, σε ένα μικρό αριθμό ναυτιλιακών ομίλων με αντικείμενο τους την κυριότητα, την εκμετάλλευση και τη διαχείριση πλοίων. Ενδεικτικά, οι μεγαλύτεροι ναυτιλιακοί ομίλοι σε αριθμό πλοίων μεταφοράς υγρού ή/και ξηρού φορτίου, οι οποίοι είναι εισηγμένοι σε χρηματιστηριακές αγορές, έχουν ως εξής:

<table>
<thead>
<tr>
<th>Αριθμός πλοίων</th>
<th>DWT (tones)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Teekay</td>
<td>107</td>
</tr>
<tr>
<td>OSG</td>
<td>86</td>
</tr>
<tr>
<td>Frontline</td>
<td>70</td>
</tr>
<tr>
<td>General Maritime</td>
<td>61</td>
</tr>
<tr>
<td>OMI</td>
<td>48</td>
</tr>
</tbody>
</table>

Αριθμός πλοίων: 107, DWT (tones): 11,868,620
Αριθμός πλοίων: 86, DWT (tones): 9,082,381
Αριθμός πλοίων: 70, DWT (tones): 16,052,629
Αριθμός πλοίων: 61, DWT (tones): 6,188,663
Αριθμός πλοίων: 48, DWT (tones): 3,562,128

Case Study: Teekay

Σύμφωνα με τον διευθύνοντα σύμβουλο (CEO) Bjorn Møller, η στρατηγική που ακολουθεί η εταιρία είναι καταρχήν η αύξηση των μεγεθών της ώστε να επιτευχθούν οικονομικά κλίμακας και να επιμετρείται το κόστος για την ανάπτυξη υποδομής, και στη συνέχεια η επένδυση σε ανθρώπινο δυναμικό και συστήματα.

Ως μελέτη περίπτωσης σχετικά με την υιοθέτηση ηλεκτρονικών υπηρεσιών, η εταιρία Teekay έχει παρουσιάσει την εγκατάσταση ενός ηλεκτρονικού συστήματος διαχείρισης του στόλου, το οποίο συνδέει τις ναυτιλιακές λειτουργίες (operations) με τις ναυλώσεις και τη λογιστική υποστήριξη σε παγκόσμια βάση, προσφέροντας πρόσβαση σε

Ωμάδα Εργασίας Η1
ΤΕΛΙΚΟΥ ΠΑΡΑΔΟΤΕΟΥ
84
πληροφορίες σχετικά με την εμπορική εκμετάλλευση και λειτουργία στο σύνολο του οργανισμού.

Το νέο σύστημα αναπτύχθηκε από την Danaos Management Consultants, με βάση τις προδιαγραφές που έθεσε η εταιρία Teekay και εξει δια στόχο τη βελτιστοποίηση της εκμετάλλευσης του στόλου, μέσω της επιλογής του κατάλληλου πλοίου για την εκάστοτε απασχόληση λαμβάνοντας υπόψη τον χρονοδιάγραμμα του ταξιδιού και τα χαρακτηριστικά του μεταφερόμενου φορτίου.

Το σύστημα επιτρέπει επίσης την επικοινωνία και την κοινή πληροφόρηση σε πραγματικό χρόνο (real time), σε όλα τα γραφεία της εταιρίας των ανά τον κόσμο και κυρίως μεταξύ των γραφείων ναυλώσεως, τα οποία βρίσκονται στην Ασία, την Ευρώπη και την Βόρεια Αμερική με τα κεντρικά γραφεία στο Βανκούβερ, προσφέροντας τη δυνατότητα για άμεση λήψη αποφάσεων σε 24ωρη βάση.

Το σύστημα κόστισε $2.9 εκ. και χρειάστηκαν δύο χρόνια μέχρι την έναρξη λειτουργίας του.

Στον τομέα των δορυφορικών τηλεπικοινωνιών, η ΤΕΕΚΑΥ συμμόρφωσε με την Connexion by Boeing στην εγκατάσταση ευρυζωνικής δορυφορικής σύνδεσης σε 50 πλοία του στόλου της, με δικαίωμα να την επεκτείνει σε 40 ακόμη πλοία στο άμεσο μέλλον. Η συμφωνία ήρθε ως αποτέλεσμα της πειραματικής δοκιμής του συστήματος στο πλοίο Hermione Spiritlast, όπου επιτεύχθηκε διαθεσιμότητα 92%, με τη μέση ταχύτητα να ανέρχεται σε 128 kbps. Η υπηρεσία θα καλύπτει τον Β. Ατλαντικό και τον Ειρηνικό από το τέταρτο τρίμηνο του 2005, και τον Ινδικό από το πρώτο τρίμηνο του 2006 και οι ταχύτητες επικοινωνίας θα κυμαίνονται μεταξύ 256kbps και 5MB. Με τις ταχύτητες αυτές θα είναι εφικτή.

5.8.2 Λήψη Υπηρεσιών από Τρίτους (Outsourcing)

Η έννοια της λήψης υπηρεσιών από τρίτους (Outsourcing) σε τομείς δραστηριότητας μιας επιχείρησης είναι μια ευρέως αποδεκτή λύση και αποτελεί μια κοινή πρακτική για πολλές επιχειρήσεις στην Ελλάδα και στο εξωτερικό.

Το Outsourcing, σχετικά με τις υπηρεσίες διαχείρισης πολιτικών πλοίων στη ναυτιλιακή βιομηχανία, συμπεριλαμβανομένων των ηλεκτρονικών εφαρμογών, υπηρεσιών και επικοινωνιών αποτελεί μια σχετικά νέα εξέλιξη. Οι μεγαλύτερες σε αριθμό πλοίων εταιρείες διαχείρισης είναι η Vships με 350 πλοία, η Wallem με 150 και η Tesma με 80. Σύμφωνα με την Vships, περίπου το 25% του παγκόσμιου στόλου με μέγεθος πάνω από 2500 dwt, δηλαδή περίπου 5.000 πλοία βασίζονται πλήρως ή μερικώς σε υπηρεσίες διαχείρισης, παρεχόμενες από τρίτους.

Ομάδα Εργασίας Η1 ΣΧΕΔΙΟ ΤΕΛΙΚΟΥ ΠΑΡΑΔΟΤΕΟΥ 85
Case Study: Vships

Case Study: Wallem

Η εταιρία έχει εγκατεστημένο εσωτερικό σύστημα e-procurement (προμηθειών) από το 1998, το οποίο έχει διαχειριστεί 50.000 παραγγελίες ανταλλακτικών, εφοδιών και υπηρεσιών για τα υπό διαχείριση πλοία. Το σύστημα στηρίζεται στην ηλεκτρονική ανταλλαγή δεδομένων (EDI) με δυνατότητες χαρτογράφησης και προσφέρει σύνδεση μέσω Internet, δυνατότητα παρακολούθησης της εφοδιαστικής αλυσίδας από την παραγγελία έως την παράδοση. Οι πελάτες-πλοιοκτήτες έχουν τη δυνατότητα να παρακολουθήσουν ηλεκτρονικά την διαδικασία προμηθειών, αλλά και να λάβουν επιπλέον πληροφορίες σχετικά με το υπό διαχείριση πλοίο.
6.1 Συμπεράσματα

Η ναυτιλία αποτελεί μια κατ’ εξοχήν παγκοσμιοποιημένη βιομηχανία που ρυθμίζεται κυρίως από διεθνείς κανονισμούς μέσω του Διεθνούς Ναυτιλιακού Οργανισμού, με πρωτοβουλία του οποίου έχει θεσπισθεί ένας μεγάλος αριθμός από ρυθμιστικές Συνθήκες σχετικά με την ασφάλεια των θαλάσσιων μεταφορών, την έρευνα και διάσωση και την προστασία του περιβάλλοντος. Το νομοθετικό πλαίσιο σε παγκόσμιο επίπεδο βρίσκεται σε συνεχή εξέλιξη, με βάση τις συνθήκες του κλάδου, όπως αυτές διαμορφώνονται από την καθημερινή δραστηριότητα των πλοίων και των ναυτιλιακών εταιρειών και τα πορίσματα από τη διερεύνηση των πάσης φύσεως ναυτικών ατυχημάτων. Στο πλαίσιο αυτό, διάφοροι φορείς παρακολουθούν με αυστηρότητα την εφαρμογή των κανονισμών, όπως οι αρχές του νηπιογιού (flag state authorities) των ναυτιλιακών χωρών, αλλά και οι λιμενικές αρχές (port state authorities), και διενεργούν επιθεωρήσεις και πιστοποιήσεις με στόχο την ασφάλεια της ναυπιτλοίδας και την προστασία του θαλάσσιου περιβάλλοντος.

Παράλληλα χαρακτηρίζεται από έντονο ανταγωνισμό, ο οποίος ενισχύεται λόγω της συγκέντρωσης από πλευράς ζήτησης σε λιγότερους και σημαντικότερους παίκτες, και ταυτόχρονα λόγω της γενικής απαίτησης για ποιότητα υπηρεσιών μέσω της προτίμησης των ναυλωτών σε σύγχρονα πλοία, τα οποία διαχειρίζονται καλά οργανωμένες ναυτιλιακές εταιρείες.

Στα ανωτέρω πλαίσια, η ελληνόκτητη ναυτιλία, που σχετίζεται με τη μεταφορά φορτίων και εμπορευμάτων, παραμένει ιδιαίτερα ανταγωνιστική, καταλαμβάνοντας την πρώτη θέση σε παγκόσμιο επίπεδο με τον έλεγχο του 10% του στόλου. Αποδεικνύει κατά αυτό τον τρόπο τη συνεχή προσαρμογή της στις μεταβαλλόμενες συνθήκες, με την ανάπτυξη των υποδομών της και τη βελτίωση της αποτελεσματικότητας και της ποιότητας των προσφερόμενων υπηρεσιών, γεγονός που επιβεβαιώνεται και από το ευρύ επενδυτικό πρόγραμμα της (πάνω από USD 20 δις την τελευταία πενταετία) σε νέες κατασκευές πλοίων.

Στον τομέα των πληροφοριακών και επικοινωνιακών τεχνολογικών λύσεων όμως, οι επενδύσεις σε ένα σημαντικό τμήμα της Ελληνόκτητης ναυτιλίας παρουσιάζουν υστέρηση, με αποτέλεσμα να μην έχει επιτευχθεί ακόμη η εκτενής υποστήριξη των επιχειρηματικών διαδικασιών. Τα κύρια εμπόδια ως προς την περαιτέρω υιοθέτηση των ηλεκτρονικών υπηρεσιών και λύσεων, σύμφωνα με τις ναυτιλιακές επιχειρήσεις, συνοψίζονται στο αρχικό κόστος εγκατάστασης, στην έλλειψη αξιοπιστίας και αποτελεσματικής τεχνικής υποστήριξης, στο υψηλό μέχρι σήμερα κόστος των
6.2 Προτάσεις προς την Ελληνόκτητη ναυτιλία

Εξετάζοντας την αγορά πληροφορικών και επικοινωνιακών τεχνολογιών, διαπιστώνεται μέχρι σήμερα το εύρος των υφιστάμενων λύσεων στις δορυφορικές τηλεπικοινωνιακές υπηρεσίες παρέχοντας χαμηλό με αποτέλεσμα την επιβολή περιορισμών στη διαχείριση του ολόκληρου εγκεκριμένου όγκου πληροφορίας που ανταλλάγεται μεταξύ ξηράς και πλοίου. Με την πρόσφατη έλευση των ταχύτερων συνδέσεων, προσφέρεται πλέον ένα σύνολο ανταγωνιστικών λύσεων, όπου η επιλογή
Ηλεκτρονικές Υπηρεσίες και Εφαρμογές στη Ναυτιλία: Ισχύουσα Κατάσταση και Προοπτικές

ης κατάλληλης εξαρτάται από τις ανάγκες του χρήστη, το κόστος αρχικής εγκατάστασης και χρήσης, ενώ αναμένονται στο άμεσο μέλλον νέες τεχνολογίες, οι οποίες θα προσφέρουν ευρυζωνικές συνδέσεις στη Ναυτιλία. Παράλληλα ο ανταγωνισμός μεταξύ των παρόχων και η είσοδος των νέων υπηρεσιών αναμένεται να οδηγήσει σε σημαντική μείωση του κόστους χρήσης. Αυτό αναμένεται να οδηγήσει στην υιοθέτηση ταχύτερων συνδέσεων, την αποτελεσματικότερη ανταλλαγή δεδομένων, την υποστήριξη ολοκληρωμένων εφαρμογών και τέλος την ενοποίηση του πλοίου με το εταιρικό δίκτυο ως μόνιμα συνδεδεμένου κόμβου.

Στον τομέα των ηλεκτρονικών εφαρμογών, από πλευράς των παρόχων, μετά την κάλυψη σχεδόν όλου του φάσματος των ναυτιλιακών εργασιών με σχετικές λύσεις, επιδιώκεται η διασύνδεση των επιμέρους εφαρμογών, ώστε να αποκτήσουν ανταγωνιστικό πλεονέκτημα προσφέροντας ολοκληρωμένες υπηρεσίες. Παράλληλα όμως επιδιώκεται η διαφοροποίηση στα προϊόντα με σκοπό την προσέλκυση μερίδιο της αγοράς των χρηστών, αλλά και η προστιθέμενη αξία (added value) στα προϊόντα τους, μέσω της συνεχούς προσαρμογής (customization), της δημιουργίας κλειστών ναυτιλιακών αγορών, και της ενοποίησης (integration) με ανταγωνιστικές εφαρμογές οι οποίες έχουν μεγαλύτερη αποδοχή από την αγορά.

Με βάση τα συμπεράσματα που προέκυψαν από την μελέτη της Ελληνοκτήτης ναυτιλίας αλλά και των υφιστάμενων πληροφοριακών και τηλεπικοινωνιακών λύσεων, προτείνεται

- Η στενή παρακολούθηση των επερχόμενων τηλεπικοινωνιακών εξελίξεων, οι οποίες θα μεταβάλλουν ριζικά αφενός το κόστος λειτουργίας και αφετέρου την ταχύτητα, προσφέροντας νέες δυνατότητες στην οργάνωση και τη διαχείριση των ναυτιλιακών εταιριών.

- Ανάλογα με τον επιχειρηματικό σχεδιασμό και κυρίως στην περίπτωση επένδυσεων σε σύγχρονα πλοία, συστήνεται η περαιτέρω ανάπτυξη των πληροφοριακών συστημάτων και υποδομών.

- Σημαντικό ρόλο στο άμεσο μέλλον θα έχει η ενίσχυση της διαλειτουργικότητας μεταξύ των ήδη εγκατεστημένων εφαρμογών, με στόχο την πλήρη ενοποίηση.

- Η αύξηση της χρήσης του Διαδικτύου, η εξοικείωση με τις υφιστάμενες διαδικτυακές εφαρμογές και η βελτίωση του διαδικτυακού τόπου της ναυτιλιακής εταιρίας

- Σε κάθε περίπτωση η συνεργασία της ναυτιλιακής εταιρίας με εξειδικευμένα στελέχη σε θέματα Information Technology και Information Systems θεωρείται ιδιαίτερα σημαντική.
6.3 Προτάσεις προς την Πολιτεία

Εξετάζοντας την υφιστάμενη κατάσταση και τον τρόπο λειτουργίας των ελληνικών ναυτιλιακών εταιρειών, καθώς και την ανάμειξη της πολιτείας στην λειτουργία τους και σύμφωνα με τις διαβουλεύσεις που πραγματοποιήθηκαν στην έρευνα αυτή, καταλήγουμε στις εξής προτάσεις:

- Δημιουργία ανεξάρτητου εποπτικού φορέα
- Βελτίωση εκπαίδευσης Ελλήνων ναυτικών
- Προώθηση τηλεϊατρικής στην Ελληνική ποντοπόρο ναυτιλία

Προτείνεται η δημιουργία ενός ανεξάρτητου εποπτικού φορέα, ο οποίος θα συντελέσει στην άναλυση του ρόλου της τεχνικής υποστήριξης των παρόχων λογισμικού στις ναυτιλιακές εταιρείες. Σε αυτόν τον φορέα θα πρέπει να συμμετέχει επίσης η Ένωση Ελλήνων Εφοπλιστών και η AMMITEC προκειμένου να εκφράζουν τις απαιτήσεις και ανάγκες τους, καθώς και να δίνουν συμβουλευτικό χαρακτήρα, αφού όπως προκύπτει έχουν άριστη γνώση της αγοράς.

Προκύπτει επίσης η ανάγκη βελτίωσης της εκπαίδευσης των Ελλήνων ναυτικών μέσω της προσθήκης μαθημάτων πληροφορικής. Πρέπει η πολιτεία να φροντίσει την αποτύπωση των υφιστάμενων αναγκών της ελληνικής και διεθνούς ναυτιλίας αναφορικά με τις ηλεκτρονικές και τηλεπικοινωνιακές εφαρμογές και να προσαρμόσει τα προγράμματα σπουδών ανάλογα με τις ανάγκες της αγοράς. Προάγοντας με αυτόν τον τρόπο την παροχή ποιοτικών υπηρεσιών από τα στελέχη του εμπορικού ναυτικού, καθώς και των μελλοντικών ναυτιλιακών στελεχών της ακαδημαϊκής κοινότητας.

Τέλος πρέπει να δοθεί μεγαλύτερο βάρος στην ανάπτυξη της τηλεϊατρικής στην ποντοπόρο ναυτιλία. Πρέπει να βρεθεί ένα συμφέρον μοντέλο για την επιχορήγηση της ελληνικής ναυτιλίας με συστήματα τηλεϊατρικής στα πλοία, δίνοντας έτσι μεγάλο βάρος στην αξία της υγείας των Ελλήνων και μη στελεχών πλοίων, προάγοντας την εταιρική ευθύνη των ελληνικών ναυτιλιακών εταιρειών στη στελέχη τους.
22. The Digital Ship. Com Conferences:
 • “Innovation in ship shore communications” (2001), London, 21 June.
 • “Opportunities and applications with Inmarsat Fleet” (2002), Athens, 6 June.
 • “Shipping Internet, making it work” (2001), London, 27 February.
 • “Integrating maritime operations” (2001), London, 29 November.
 • “Opportunities and applications with the new Inmarsat Fleet” (2002), Hamburg, 30 January.
 • “Electronic tools for brokers” (2001), London, 18 October.
 • “Maritime knowledge management technology” (2002), London, 7 May.
 • “Shipping Internet, making it work” (2002), London, 17 April.
 • “Digital Ship Hong Kong” (2001), Hong Kong, 17-18 September.
 • “Digital Ship Conference (2004), Athens
Ηλεκτρονικές Υπηρεσίες και Εφαρμογές στη Ναυτιλία: Ισχύουσα Κατάσταση και Προοπτικές

35. Marchal, B. (2002), *XML by Example*, Que, USA.
49. Διεθνής Ναυτιλιακός Οργανισμός (IMO) - http://www.imo.org
51. Υπουργείο Εμπορικής Ναυτιλίας - http://egov.yen.gr
Την Πέμπτη 20 Ιανουαρίου πραγματοποιήθηκε στις εγκαταστάσεις της ΕΔΕΤ η 1η διαβούλευση της ομάδας εργασίας Η1: «Ηλεκτρονικές Υπηρεσίες και Εφαρμογές στη Ναυτιλία: Ισχύουσα Κατάσταση και Προοπτικές» του όγδοου κύκλου εργασιών του eBusiness Forum.

Στόχος της διαβούλευσης ήταν η προσέγγιση της υφιστάμενης κατάστασης χρήσης ηλεκτρονικών υπηρεσιών και εφαρμογών στην Ναυτιλία, καθώς και η συζήτηση σχετικά με την αγορά ηλεκτρονικών ναυτιλιακών υπηρεσιών και εφαρμογών στην Ελλάδα και στον υπόλοιπο κόσμο γενικότερα, τόσο όσον αφορά τα σημερινά μεγέθη όσο και τις μελλοντικές εξελίξεις.

Η διαβούλευση ξεκίνησε με παρουσίαση του κ. Νικητάκου και της κα. Λάμπρου σχετικά με την ομάδα εργασίας Η1 και το περιβάλλον μελέτης. Έγινε συνοπτική παρουσίαση του θέματος της ομάδας καθώς και εισήγηση του κ. Χατζάκη της ΕΔΕΤ σχετικά με τους σκοπούς της. Εν συνεχεία της παρουσίασης ο κ. Νικητάκος ζήτησε από τα παρευρισκόμενα μέλη, που αποτελούν στην πλειοψηφία τους στελέχη ναυτιλιακών επιχειρήσεων αλλά και εταιρειών παροχής λύσεων πληροφορικής και τηλεπικοινωνιακών υπηρεσιών, να παραθέσουν τις απόψεις τους πάνω στο θέμα των ηλεκτρονικών υπηρεσιών και τεχνολογιών από την πλευρά των χρηστών και των παρόχων, καθώς και να βίβουν τους παράγοντες που επηρεάζουν την εξάπλωσή τους και την χρήση τους στην ελληνική πραγματικότητα. Η συζήτηση κινήθηκε σε γενικά πλαίσιο προκειμένου να οριοθετηθεί αυστηρότερα το ευρύ θέμα σε συγκεκριμένες αγορές, κατά κύριο λόγο όμως αφορούσε στην ποντοπόρο ναυτιλία.

Βασικό σημείο συζήτησης αποτέλεσαν οι ισχύουσες πρακτικές και τα προβλήματα που αντιμετωπίζουν οι ναυτιλιακές εταιρείες για την υιοθέτηση των ηλεκτρονικών υπηρεσιών και νέων τεχνολογιών. Ο κ. Μπούμπαλος αναφέρθηκε στο χαμηλό επίπεδο γνώσης και εξοικείωσης των παλαιότερων στελεχών ναυτιλιακών εταιρειών με τις νέες τεχνολογίες. Οι εν λόγω εταιρείες διοικούνται και λειτουργούν ακόμη με παραδοσιακό τρόπο, ενώ αμφισβητείται η αποτελεσματικότητα αυτών των τεχνολογιών σε επίπεδο διαχείρισης και
Ο κ. Βαρελάς της Danaos Management Consultants αναφέρθηκε στον παγκόσμιο χαρακτήρα της ναυτιλιακής βιομηχανίας, γεγονός που δεν επιτρέπει να απομονώσουμε τον ελληνικό χώρο, ως βασικό ζήτημα του αντικειμένου εργασιών της ομάδας (H1).

Επίσης ανέφερε ότι το εύρος των καλών πρακτικών και των τεχνολογικών λύσεων για την υποστήριξη των δραστηριοτήτων της ναυτιλιακής επιχείρησης έχει ήδη καταγραφεί, αντιστοίχως δε έθεσε το ζήτημα της στάσεως της, των ακριβέστερων ερωτημάτων, προσέγγισης της H1.

Η κα Λάμπρου συμψώνησε στην διαπίστωση της άφθονης προηγούμενης γνώσης, σχετικά με τα εξεταζόμενα θέματα, επέμενε δε στη βασική διάσταση της ευρύτερης ενημέρωσης και ευαισθητοποίησης μέσα από το μηχανισμό του ebusiness forum και το ρόλο που μπορεί να έχει αυτό στη ναυτιλιακή κοινότητα.

Ο Δρ. Π.Νομικός, πρόεδρος της AMMITEC (Association of Maritime Managers of Information Technology and Communications), έκανε μια συνοπτική παρουσίαση του οργανισμού στον οποίο ανήκουν 40 διεθνείς καθώς και 100 μέλη που εργάζονται στο εξωτερικό. Η AMMITEC έχει ως σκοπό την προώθηση της σωστής χρήσης των πληροφοριακών συστημάτων στις ναυτιλιακές εταιρείες, την online επικοινωνία και ανταλλαγή απόψεων μεταξύ των μελών του ενός πίνακα που αντιμετωπίζουν στις εταιρείες από την χρήση των νέων τεχνολογιών. Ο οργανισμός αυτός επιδιώκει επίσης να συμμετάσχει στην ανάπτυξη προτύπων (standards), αλλά και συμβουλευτικά στα κέντρα λήψης αποφάσεων που αφορούν στη ναυτιλία. Ο Δρ. Π.Νομικός τόνισε ότι η ναυτιλία παρέχει στάσης τεχνολογία, με σημαντικότερο ανασταλτικό παράγοντα ως προς την υιοθέτηση πληροφοριακών συστημάτων την έλλειψη ευρυζωνικών (broadband) τηλεπικοινωνιών για την μίζων σε πλοίου-γραφείου. Υποστήριξε ότι βρισκόμαστε μπροστά σε μια επανάσταση στο χώρο των τηλεπικοινωνιών, όπου η online σύνδεση πλοίου-γραφείου θα είναι ευρύτερα εφικτή, και το επόμενο βήμα θα είναι η ενοποίηση των στόλων σε ένα ολοκληρωμένο πληροφοριακό σύστημα.
Τονίστηκε επίσης ότι θα πρέπει να αυξηθεί η ενημέρωση της ευρύτερης ναυτιλιακής κοινότητας σχετικά με το θέμα, για να αποφευχθούν μελλοντικά προβλήματα ανταγωνιστικότητας. Συγκριτικά με άλλους τομείς η Ναυτιλιακή Βιομηχανία είναι πισώ στην εφαρμογή των πληροφοριακών και τηλεπικοινωνιακών τεχνολογιών και ειδικότερα οι ελληνικές ναυτιλιακές, εάν τις συγκρίνουμε με αυτές της Βόρειας Αμερικής και της Ευρώπης, και ειδικότερα με εκείνες της Νορβηγίας.

Ο κ. Κόβρης, διευθυντής πληροφορικής της Eletson Corporation, υποστήριξε ότι κάθε εταιρία παρουσιάζει ιδιαίτερης στην λειτουργία της και σε μια επένδυση σε νέα πληροφοριακά συστήματα δεν είναι εύκολος ο υπολογισμός της απόδοσης της (Return on Investment). Επίσης οι ανάγκες ανταλλαγής πληροφοριών είναι συνεχώς αυξανόμενες, όχι τόσο από την εταιρία, αλλά από οργανισμούς που επιβάλλουν κανονισμούς και ρυθμίσεις και αυτό έχει ως αποτέλεσμα την άρση των πληροφοριακών και τηλεπικοινωνιακών τεχνολογιών στη Ναυτιλιακή Βιομηχανία. Είναι σημαντικό να εξετάσουμε εναλλακτικούς τρόπους που να αποδεικνύουν την αποτελεσματικότητα των επενδύσεων σε νέες τεχνολογίες.

Πάνω στο συγκεκριμένο ζήτημα ο κ. Μπούμιταλος τόνισε ότι θα έπρεπε να λάβουμε υπόψη τις ικανότητες των Ελλήνων αξιωματικών του εμπορικού ναυτικού, την ευαισθησία και τον επαγγελματισμό τους, που τους οδήγησε όλα τα προηγούμενα χρόνια σε γρήγορη και αρκετή διόρθωση των πλοίων, σε αντίθεση με τους αντίστοιχους Νορβηγούς οι οποίοι είχαν προβλήματα και καθυστέρησης όλη την αναβαθμισμένη επικοινωνία μεταξύ πλοίου-γραφείου. Επίσης ανέφερε πάνω στο θέμα της κατανόησης μιας επένδυσης πληροφοριακών και τηλεπικοινωνιακών συστημάτων στη ναυτιλιακή εταιρία ότι αυτή πρέπει να γίνει με την μέτρηση των ανθρωποστρωτών που εξοικονομούν οι εταιρίες από την χρήση των συστημάτων και όχι μόνο από την μείωση του κόστους που μπορεί να επιτύχουν. Σε κάθε περίπτωση χρειάζεται απλή παρουσίαση στους πλοιοκτήτες, όπου το κάθε προϊόν συνδέεται παραπάνω με το όφελος που παρέχει.

Ένα άλλο θέμα που έβλεπε ο κ. Βαρελάς είναι της σωστής και συνεχούς εκπαίδευσης των αποφοίτων πανεπιστημιακών ιδρυμάτων σε θέματα χρήσης και εφαρμογής λύσεων πληροφορικής στις ναυτιλιακές εταιρίες, ώστε να είναι εξοικειωμένοι και έτοιμοι να τις εφαρμόσουν προσπαθώντας μελλοντικά να ξεπεραστεί η συντηρητική νοοτροπία που κυριαρχεί μέσα στις περισσότερες ναυτιλιακές εταιρίες.

Ο κ. Μανωλένος, διευθυντής στην Dreamtech Information Systems & Networks επισήμανε ότι τώρα είναι ο σωστός χρόνος για επενδύσεις σε πληροφοριακά και
Ηλεκτρονικές Υπηρεσίες και Εφαρμογές στη Ναυτιλία: Ισχύουσα Κατάσταση και Προοπτικές

ηλεκτρονικών συστήματα καθώς οι περισσότερες ναυτιλιακές εταιρείες εξαιτίας των υψηλών ναύλων έχουν την δυνατότητα να διαθέσουν κεφάλαια με σκοπό να προετοιμαστούν για το μέλλον και να μειώσουν τα κόστη στους δύσκολους καιρούς που θα ακολουθήσουν για την ναυτιλία. Τόνισε ότι πρέπει να γίνουν μετρήσεις αποδοτικότητας πριν και μετά την εφαρμογή των πληροφοριακών και τηλεπικοινωνιακών τεχνολογιών στις εταιρείες και να εξεταστούν στα πλαίσια των εργασιών της H1, μελέτες περιπτώσεων (success stories) που να προβάλλουν αποδοτικά τα πλεονεκτήματα από τη χρήση νέων τεχνολογιών πληροφορικής και επικοινωνιών στις ναυτιλιακές επιχειρήσεις. Σημείωσε ότι η κα Λάμπρου λέγοντας η αποτύπωση άριστων μελετών περίπτωσης είναι μέρος της προτεινόμενης μεθοδολογίας, για τις εργασίες της H1, και πρόσθεσε ότι πρέπει να αναγνωριστούν οι κρίσιμα παράγοντες επιτυχίας των ναυτιλιακών που είδη έχουν εφαρμόσει νέες τεχνολογίες στις διαδικασίες τους.

Ο κ.Καραγκούνης της LMZ Transoil ανέφερε ότι το κόστος των τηλεπικοινωνιών έχει μειωθεί ραγδαία, αλλά πάνω από τις μισές ναυτιλιακές εταιρείες χρησιμοποιούν ακόμη συνδέσεις 2,4 kbit.

Ο κ. Μακρής της OTESAT–Maritel μίλησε για το μέλλον των τηλεπικοινωνιών και τον πλήθος των δυνατοτήτων που θα δοθούν στους χρήστες με την χρήση των δορυφορικών τηλεπικοινωνιών σε συνδυασμό με τις επίγειες και ασύρματες επικοινωνίες. Στη συνέχεια παρουσίασε τις λύσεις που προσφέρει η OTESAT–Maritel στους πελάτες της που οδηγούν στον εκσυγχρονισμό των πληροφοριακών συστημάτων στην εταιρία και πάνω στο πλοίο.

Ο κ. Τάσος Μακρής της Gourdomichalis Maritime S.A. αναφέρθηκε στον σκεπτικισμό των Ναυτιλιακών εταιρειών και στον φόβο τους ότι η εφαρμογή νέων τεχνολογιών θα μπορούσε να φέρει στην εταιρία περισσότερα προβλήματα παρά λύσεις. Αυτό οφείλεται στο γεγονός ότι υφίσταται λογισμικό με χαμηλό δείκτη χρησιμότητας το οποίο δημιουργεί προβλήματα και δυσλειτουργία στην παραγωγική διαδικασία.

Ο κ. Λαγουδής της ABS Consulting Inc. πρόσθεσε αναφορικά με τις επενδύσεις ότι η Ελληνική Ναυτιλιακή βιομηχανία γιαντωθήκε εξαιτίας του ελάχιστου κόστους που πέτυχε όλα αυτά τα χρόνια και συνεπώς δύσκολα θα προβεί σε επενδύσεις, εάν δεν καταλάβει τα κέρδη που θα τις αποφέρουν οι επενδύσεις αυτές.
Ηλεκτρονικές Υπηρεσίες και Εφαρμογές στη Ναυτιλία: Ισχύουσα Κατάσταση και Προοπτικές

Τέλος ο κ. Ιωάννου, νομικός σύμβουλος σε ναυτιλιακά ζητήματα, επισήμανε τα εξής: “πολλές φορές πληροφορίες μεταξύ πλοίων και εταιριών ίσως να χάνονται, κατά τέτοιο τρόπο ώστε σε περίπτωση κάποιας απαίτησης (claim) από πλευράς πλοιοκτήτη ή διαχειριστή, αυτή η απώλεια στοιχείων/πληροφοριών να αποβαίνει τελικώς υπέρ της εταιρίας. Προκειμένου το λόγο πιστεύω, ότι στην Ελληνική παραδοσιακή ναυτιλία, όπου δεν υπάρχουν πολλοί μέτοχοι στις εταιρίες, να υπάρξουν κάποιες αντιδράσεις ως προς τον τρόπο "μετακίνησης" πληροφοριών... και με το δίκιο τους βεβαίως, αφού θα πρέπει να γίνεται έλεγχος στις πληροφορίες που διανέμονται, έτσι ώστε η εταιρία να λειτουργεί σύμφωνα πάντα με τον τρόπο που ο κάθε πλοιοκτήτης θέλει την εταιρία, που στις περισσότερες περιπτώσεις ο ίδιος έχει δημιουργήσει και την βλέπει περισσότερο σαν παιδί του, πάρα σαν ακόμη μια ναυτιλιακή εταιρία...και ποιος γονέας δεν θέλει το καλύτερο για το παιδί του.”
Την Δευτέρα 21 Φεβρουαρίου πραγματοποιήθηκε στις εγκαταστάσεις της ΕΔΕΤ η 2η διαβούλευση της ομάδας εργασίας Η1: «Ηλεκτρονικές Υπηρεσίες και Εφαρμογές στη Ναυτίλια: Ισχύουσα Κατάσταση και Προοπτικές» του όγδου κύκλου εργασιών του eBusiness Forum.

Συγκεκριμένα στόχος της δεύτερης αυτής διαβούλευσης ήταν η συζήτηση και η μελέτη των παρακάτω θεμάτων:

- Το υφιστάμενο επίπεδο χρήσης τηλεπικοινωνιακών προϊόντων και υπηρεσιών από τις ναυτιλιακές εταιρίες.
- Οι κρίσιμοι παράγοντες επιτυχίας για την περαιτέρω ανάπτυξη αυτών με βάση τις ανάγκες των χρηστών.
- Τα χαρακτηριστικά των τηλεπικοινωνιακών λύσεων που προτείνονται στην Ελληνική και Διεθνή Ναυτιλιακή αγορά.
- Οι μελλοντικές εξελίξεις στο τομέα των τηλεπικοινωνιών σε σχέση με την Ναυτίλια και οι ενδεχόμενες μεταβολές που θα επιφέρουν στη λειτουργία της ναυτιλιακής επιχείρησης.

Η διαβούλευση ξεκίνησε με την παρουσίαση (βλ. www.ebusinessforum.gr) του κ. Νικητάκου σχετικά με τις υφιστάμενες τεχνολογίες και τηλεπικοινωνιακές υπηρεσίες που αφορούν τη ναυτιλία. Σε συνεχεία της παρουσίασης, ο κ. Νικητάκος ζήτησε από τα παρευρισκόμενα μέλη, να παραθέσουν τις απόψεις τους πάνω στο θέμα των τηλεπικοινωνιακών υπηρεσιών και τεχνολογιών από την πλευρά των χρηστών και των παρόχων.

Ο κ. Νομικός, πρόεδρος της ΑΜΜΙΤΕΚ (Association of Maritime Managers of Information Technology and Communications, λαμβάνοντας πρώτος το λόγο, αναφέρθηκε στις σημερινές ανάγκες των χρηστών, οι οποίες περιλαμβάνουν μετάδοση φωνής, κειμένου, telex και πληροφορίες, και καλύπτονται κατά μείζονα λόγο από τις υπηρεσίες Inmarsat A, B, C και Mini-M. Το σύνολο του παγκόσμιου ποντικόπορου στόλου ανέρχεται σε 40000 πλοία περίπου και στο 15% εξ αυτών βρίσκεται εγκατεστημένο το σύστημα Inmarsat A, στο 23% το Inmarsat B και πάνω από το 50% φέρει το σύστημα
Η κα Νικολίτσα, εκπροσωπώντας την εταιρία Hellas Sat, παρουσίασε τις περιοχές κάλυψης του ελληνικού δορυφόρου HELLAS SAT 2 (Ευρώπη, Μεσόγειος Θάλασσα, ακτές Β. Αφρικής, Μ. Ανατολή, Ασία μέχρι το Πακιστάν και Ν. Αφρική) και επέξηγε ηνιαίος διαστήματος χάρη στο θαυμάσιο μηνιαίο μίσθωμα. Για τη μείωση της εν λόγω δαπάνης, θα πρέπει να υπάρξει ευρύτερη αποδοχή της υπηρεσίας από τον κόσμο της ναυτιλίας η οποία θα υισκεί σε μαζική παραγωγή maritime stabilized κεραιών, αφού πρώτητα η τεχνολογία τους πιστοποιηθεί για τη λειτουργική τους συμβατότητα με γεωστατικούς δορυφόρους.

Ο κ. Τάσος Μακρής αναφέρθηκε, από πλευράς χρήστη, στην υπηρεσία παγκοσμίου κάλυψης Inmarsat C, η οποία αποτελεί κατ’ αρχήν αξιόπιστη ενδιάμεση λύση για την αποστολή και λήψη email, δεν παρέχει όμως τη δυνατότητα αποστολής attachments. Η υπηρεσία Inmarsat Mini-M αποτελεί μια φθηνή λύση για ανταλλαγή email με attachments, παρότι παρουσιάζει αδυναμίες στο λογισμικό με αποτέλεσμα τυχόν απώλειες μηνυμάτων, ή καθυστερήσεις. Επίσης αναφερόμενος στην υπηρεσία Fleet 77, τόνισε ότι αυτή βρίσκεται σε δοκιμαστικό στάδιο, με τελικό στόχο την ενταξη του πλοίου ως κόμβο στο δίκτυο της εταιρίας.

Στην ερώτηση του κ. Νικητάκου αν το μέγεθος ή η ηλικία του στόλου που διαχειρίζεται μια ναυτιλιακή εταιρία επιδρά στην εγκατάσταση σύγχρονων τηλεπικοινωνιών συστημάτων, ο κ. Καραμπατζάκης απάντησε ότι αφορά μόνο στο κόστος της εγκατάστασης στο γραφείο, το οποίο και επιμερίζεται στον αριθμό των πλοίων. Η ηλικία δεν παίζει ρόλο, παρά μόνο στα υπερηλικα πλοία, όπου βρίσκεται εγκατεστημένο το παλαιότερο Inmarsat A και δεν δικαιολογείται η αντικατάσταση του για τη υπόλοιπη διάρκεια ζωής του πλοίου.

Ο κ. Καραμπατζάκης εξέφρασε τη διαπίστωση ότι οι τηλεπικοινωνιακές ανάγκες είναι ανάλογες με τον τύπο του πλοίου, και ως παράδειγμα τα δεξαμενόπλοια
αποστέλλουν και λαμβάνουν περισσότερα μηνύματα λόγω της επικινδυνότητας του φορτίου και των συντομότερων αποστάσεων που ταξιδεύουν. Στο σημείο αυτό ο κ.Νομικός προσέθεσε πως έχει εκτιμηθεί ότι τα μηνύματα έξοδα τηλεπικοινωνιών ανέρχονται σε $500 για τα bulk carriers, ενώ για τα δεξαμενόπλοια διαμορφώνονται μεταξύ $2000-2500.

Επίσης ο κ. Καραμπατζάκης αναφέρθηκε στο τριπλάσιο κόστος του Mini-M σε σχέση με το Inmarsat B, όπως προέκυψε από δοκιμή αποστολής συγκεκριμένου μηνύματος, γεγονός που, εάν συνδυαστεί με τις διαρκώς αυξανόμενες τηλεπικοινωνιακές ανάγκες των ναυτιλιακών εταιριών, μας οδηγεί στο συμπέρασμα ότι μελλοντικά η εγκατάσταση του συστήματος Fleet 77, με σημερινό κόστος $14.000 περίπου μετά τη σχετική επιδότηση του Inmarsat, θα αποσβένεται ταχύτερα.

Ο κ.Μπούμππαλος εξήγησε ότι η επικοινωνία γίνεται σήμερα offline, όπου τα δεδομένα ομαδοποιούνται και αποστέλλονται με email με τις ελάχιστες δυνατές συνδέσεις. Επίσης υποστήριξε ότι τα προσεχή 2-3 χρόνια θα επέλθει σταδιακή μετάβαση σε online ευρυζωνικά δίκτυα, εφόσον μειωθεί το κόστος αρχικής εγκατάστασης και χρήσης.

Ο κ.Τζιρίτης αναφέρθηκε στη χρήση των επικοινωνιών στην ακτοπλοϊκή, όπου χρησιμοποιείται πλέον online σύνδεση καθώς και στις νέες διαμορφούμενες ανάγκες λόγω των ευρωπαϊκών οδηγιών για ονομαστικό check in στα πλοία αντιστοίχως με τα αεροπλάνα. Επίσης τόνισε ότι λόγω των μικρών αποστάσεων χρησιμοποιούνται στη συγκεκριμένη κατηγορία και εναλλακτικά συστήματα, όπως η κινητή τηλεφωνία.

Στην συνέχεια ο κ. Νικητάκος παρουσίασε τα περιεχόμενα του παραδοτέου με σκοπό τη διαμόρφωση μιας κοινώς αποδεκτής μορφής μέσα από σχόλια και παρατηρήσεις της Ομάδας. Ο κ. Νομικός, αναφέρόμενος στο τέταρτο κεφάλαιο, προσέθησε τις ενότητες που αφορούν στα Virtual Private Networks (το πλοίο κόμβος στο δίκτυο της εταιρίας), στην online σύνδεση του πλοίου με το Internet (το πλοίο κόμβος στο Internet), στην προστασία του πλοίου από ιούς, spam mail και στα συστήματα παρακολούθησης του μηχανοστασίου.

Ο κ. Στρατάκος, κλείνοντας τη διαβούλευση, ζήτησε τη συμμετοχή όλων των μελών στο σχολιασμό των περιεχομένων του παραδοτέου, καθώς και στην αποστολή κειμένων στην ομάδα εργασίας που θα μπορούσαν να ανεβούν στην ιστοσελίδα της και που θα μπορούσαν να εμπλουτίσουν επίσης το περιεχόμενο του παραδοτέου.
3. Πρακτικά 3ης συνάντησης (17/3/05)

Ημ/νία διεξαγωγής: Πέμπτη, 10 Μαρτίου 2005, Έναρξη: 17:30 – Λήξη: 19:00

Χώρος διεξαγωγής 3ης διαβούλευσης: Εθνικό Δίκτυο Έρευνας και Τεχνολογίας (ΕΔΕΤ), Μεσογείων 56, Αμπελόκηποι, 4ος όροφος

Την Πέμπτη 10 Μαρτίου πραγματοποιήθηκε στις εγκαταστάσεις της ΕΔΕΤ η 3η διαβούλευση της ομάδας εργασίας Η1: «Ηλεκτρονικές Υπηρεσίες και Εφαρμογές στη Ναυτιλία: Ισχύουσα Κατάσταση και Προοπτικές» του όγδουου κύκλου εργασιών του eBusiness Forum.

Συγκεκριμένα στόχος της τρίτης αυτής διαβούλευσης ήταν η συζήτηση και η μελέτη των παρακάτω θεμάτων:

- Το υφιστάμενο επίπεδο χρήσης από τις ναυτιλιακές εταιρείες των ηλεκτρονικών εφαρμογών που αφορούν στη διευκόλυνση κρίσιμων επιχειρηματικών ναυτιλιακών εργασιών και διαδικασιών.
- Οι κρίσιμοι παράγοντες επιτυχίας για την περαιτέρω ανάπτυξη αυτών.
- Τα χαρακτηριστικά των λύσεων που προτείνονται στην Ελληνική και Διεθνή Ναυτιλιακή αγορά.
- Οι μελλοντικές εξελίξεις τους σε σχέση με την Ναυτιλία και οι ενδεχόμενες μεταβολές που θα επιφέρουν στη λειτουργία της ναυτιλιακής επιχείρησης.

Η διαβούλευση ξεκίνησε με την παρουσίαση (βλ. www.ebusinessforum.gr) του κ. Νικητάκου, σχετικά με τις υφιστάμενες ηλεκτρονικές υπηρεσίες και εφαρμογές που αφορούν στη ναυτιλία. Σε συνεχεία της παρουσίασης, ο κ. Νικητάκος ζήτησε από τα παρευρισκόμενα μέλη να παραθέσουν τις απόψεις τους πάνω στο θέμα των ηλεκτρονικών υπηρεσιών και εφαρμογών από την πλευρά των χρηστών και των παρόχων.

Κατόπιν της σχετικής προτάσεως του κ. Νομικού, η συζήτηση βασίστηκε πάνω στις προηγηθείσες διαφάνειες.

Ως προς τις εφαρμογές ναυλώσεως ή αγοροπωλησιών πλοίων, ο κ. Μπούμπαλος τόνισε ότι οι συγκεκριμένες εργασίες βασίζονται κυρίως στις προσωπικές σχέσεις εμπιστοσύνης, γεγονός το οποίο καθιστά τους Έλληνες πλοιοκτήτες επιφυλακτικούς απέναντι στις ηλεκτρονικές υπηρεσίες.

Σχετικά με τις ολοκληρωμένες εφαρμογές ERP/SAP, ο κ. Κόδρης ανέφερε ότι δεν έχουν επεκταθεί ακόμη στη ναυτιλία για να καλύψουν ολοκληρωμένα τις ανάγκες της
Ηλεκτρονικές Υπηρεσίες και Εφαρμογές στη Ναυτιλία: Ισχύουσα Κατάσταση και Προοπτικές

Ο κ. Βαρελάς ανάφερε ότι σε κάθε περίπτωση είναι απαραίτητη η ανοιχτή αρχιτεκτονική ώστε να επιτρέπει οριζόντια ή κάθετη επέκταση. Επίσης τόνισε ότι είναι σπάνιο να καλύπτονται όλες οι εργασίες μιας ναυτιλιακής εταιρίας με εφαρμογές λογισμικού. Αντίθετα είναι συνηθισμένο να ανατίθενται συγκεκριμένες εργασίες σε τρίτους (outsourcing).

Ο κ. Μακρής τόνισε ότι η σημαντικότερη εφαρμογή για τη ναυτιλιακή επιχείρηση αφορά στην ενσωματωμένη διαχείριση της αλληλογραφίας (Integrated Messaging), η οποία και αποτελεί εξειδικευμένο λογισμικό. Επίσης ανέφερε ότι τα σημαντικότερα ζητήματα ως προς την ευρύτερη υιοθέτηση των ηλεκτρονικών υπηρεσιών και εφαρμογών αποτελούν η καθιέρωση προτύπων καθώς και η αξιοπιστία / τεχνική υποστήριξη.

Ο κ. Νομικός αναφέρθηκε στις επερχόμενες εξελίξεις σε σχέση με τη λειτουργία της ναυτιλιακής επιχείρησης από πλευράς εφαρμογών, με τα εξής παραδείγματα:

- Το σύστημα SCADA (Supervisory Control And Data Acquisition), το οποίο αφορά στην συνεχή παρακολούθηση της απόδοσης του πλοίου από το γραφείο με την αποστολή δεδομένων από το πρώτο.
- Τα συστήματα πληροφόρησης του πλοίου για την λήψη αποφάσεων και τον καθορισμό του Optimal Routing για το ταξίδι του πλοίου.
- Η ένταξη του πλοίου στο εταιρικό δίκτυο (Virtual Private Network) ως κόμβος και το πλήρωμα θα γίνει χρήστης των εταιρικών συστημάτων.
- Η τηλεδιάσκεψη μεταξύ πλοίου γραφείου, καθώς και γρήγορη ανταλλαγή μεγάλου όγκου δεδομένων με την χρήση ευρυζωνικού δικτύου (broadband).
- Η παρακολούθηση της ροής εργασιών (Workflow) στην εταιρία και το πλοίο, καθώς και παρακολούθηση με μέτρηση της απόδοσης των διεργασιών (Business Process) με την χρήση δεικτών αποδοτικότητας (Key Performance Indicators).
Ηλεκτρονικές Υπηρεσίες και Εφαρμογές στη Ναυτιλία: Ισχύουσα Κατάσταση και Προοπτικές

Στο τέλος ο κ. Νικητάκος παρουσίασε σχέδιο του ερωτηματολογίου με σκοπό τη διαμόρφωση μιας κοινώς αποδεκτής μορφής μέσα από σχόλια και παρατηρήσεις της Ομάδας.

Ο κ. Νομικός πρότεινε να προστεθεί μια ερώτηση με θέμα τις μελλοντικές εξελίξεις και πως αυτές αξιολογούνται με σειρά προτεραιότητας από τις διαχειρίστριες εταιρίες.

Ο κ. Βαρελάς, αναφέρομενος στο ερωτηματολόγιο, υπογράμμισε ότι αυτό προσπαθεί να καταγράψει την υφιστάμενη κατάσταση με βάση το μέσο σταθμικό. Κατά αυτόν τον τρόπο δεν αποτυπώνεται το γεγονός ότι υπάρχουν ακόμη και τώρα εταιρίες που έχουν εγκατεστημένες state of art εφαρμογές. Μια ενδεχόμενη τροποποίηση στην μεθοδολογία της έρευνας πεδίου θα ήταν η θέσπιση κριτηρίων ως προς το βαθμό ωρίμανσης και στην συνέχεια δημιουργία της πληθυσμιακής κατανομής ως προς το βαθμό ωρίμανσης βάση του δείγματος.
4. Πρακτικά 4ης συνάντησης (30/6/05)

Ημερομηνία διεξαγωγής: Πέμπτη, 30 Ιουνίου 2005, Έναρξη: 17:30 – Λήξη: 19:00
Χώρος διεξαγωγής 4ης διαβούλευσης: Εθνικό Δίκτυο Έρευνας και Τεχνολογίας (ΕΔΕΤ), Μεσογείων 56, Αμπελόκηποι, 4ος όροφος

Την Πέμπτη 30 Ιουνίου πραγματοποιήθηκε στις εγκαταστάσεις της ΕΔΕΤ η 4η διαβούλευση της ομάδας εργασίας Η1: «Ηλεκτρονικές Υπηρεσίες και Εφαρμογές στη Ναυτιλία: Ισχύουσα Κατάσταση και Προοπτικές» του Ογδοού κύκλου εργασιών του eBusiness Forum με αντικείμενο την αποτύπωση της ισχύουσας κατάστασης και την αποτίμηση της προοπτικής για την ευρύτερη και αποτελεσματικότερη χρήση των Ηλεκτρονικών Υπηρεσιών και Εφαρμογών στην Ναυτιλία.

Συγκεκριμένα στόχος της τέταρτης και τελευταίας αυτής διαβούλευσης ήταν η συζήτηση και η μελέτη των παρακάτω θεμάτων:

- Σχολισμός αποτελεσμάτων της έρευνας πεδίου (ερωτηματολόγιο)
- Συζήτηση του τελικού παραδοτέου
- Συμπεράσματα, Καλές πρακτικές
- Προτάσεις προς την πολιτεία
- Οργάνωση ημερίδας

Η διαβούλευση ξεκίνησε με την παρουσίαση (bl.www.ebusinessforum.gr) του κ. Νικητάκου, σχετικά με τα αποτελέσματα από την ανάλυση της έρευνας πεδίου, καθώς και τα συμπεράσματα που προέκυψαν ως προς την χρήση ηλεκτρονικών υπηρεσιών και εφαρμογών στις ελληνικές ναυτιλιακές εταιρείες διαχείρισης ποντοπόρων πλοίων.

Σε συνεχεία της παρουσίασης, ο κ. Νικητάκος ζήτησε από τα παρευρισκόμενα μέλη, να παραθέσουν τις απόψεις τους πάνω στα ανωτέρω.

Σχετικά με τις προτάσεις προς τις ναυτιλιακές, ο κ. Βαρελάς ανάφερε ότι δεν συμφωνεί με την άποψη ότι η ποινοτοπόρος ναυτιλία στερείται επενδύσεων και υποδομών σε ηλεκτρονικές υπηρεσίες και εφαρμογές, και έφερε σαν παράδειγμα το γεγονός ότι ένα πλήρως 20 ατόμων διαχειρίζεται μια επένδυση σημαντικής αξίας όπως ένα φορτηγό πλοίο. Ωςς αν υπολογιστούν οι επενδύσεις σε τεχνολογία ως ποσοστό των κερδών, υπάρχουν μεγάλα περιθώρια αύξησης σε σχέση με άλλες βιομηχανίες.

Επίσης ο κ. Βαρελάς συμφώνησε ως προς την ανάγκη για διαλειτουργικότητα, δηλαδή την ενοποίηση μεταξύ των εγκατεστημένων εφαρμογών, και επίσης πρότεινε τη συνεχή αξιοποίηση του Διαδικτύου από τις ναυτιλιακές εταιρείες, ειδικά σε περιπτώσεις που είναι έως και απαγορευμένη η χρήση.
Ηλεκτρονικές Υπηρεσίες και Εφαρμογές στη Ναυτιλία: Ισχύουσα Κατάσταση και Προοπτικές

Ο κ. Κοθρής ανέφερε ότι υπάρχουν πλέον εφαρμογές, οι οποίες βρίσκονται εγκατεστημένες σε όλα τα πλοία, και αντίστοιχα συστήματα τα οποία καλύπτουν σημαντικό μέρος των εργασιών μιας διαχειρίστριας εταιρίας. Παρόλα ταύτα δεν υφίσταται σχεδιασμός και στρατηγική ως προς την Πληροφορική στις ναυτιλιακές, και αυτός ενδεχομένως να είναι ο ρόλος της ΑΜΜΙΤΕΚ.

Ο κ. Μακρής ανέφερε ότι προς το παρόν οι εγκατεστημένες εφαρμογές στις ναυτιλιακές είναι στατικά προγράμματα. Πρόσθεσε επίσης ότι αναφορικά με την εκπαίδευση των στελεχών πάνω στα πλοία αυτοί είναι αυτοδίδακτοι στα συστήματα τα οποία είναι ήδη εγκατεστημένα πάνω στα πλοία.

Αναφερόμενα στην Πολιτεία, ο κ. Μακρόπουλος πρότεινε τη δημιουργία ενός φορέα στον οποίο θα συμμετέχει επίσης η Ένωση Ελλήνων Εφοπλιστών και η ΑΜΜΙΤΕΚ. Στη συνέχεια σχολίασε για την ανάγκη βελτίωσης της εκπαίδευσης των Ελλήνων ναυτικών μέσω της προσθήκης μαθημάτων πληροφορικής και τέλος αναφέρθηκε στη σημασία της τηλεϊατρικής στην ποντοπόρο ναυτιλία.

Συμπερασματικά αναφέρθηκε η ανάγκη δημιουργίας ενός φορέα ελέγχου από το Υπουργείο Εμπορικής Ναυτιλίας ο οποίος θα συντελέσει στην αναβάθμιση του ρόλου της τεχνικής υποστήριξης των παρόχων λογισμικού στις ναυτιλιακές εταιρίες.

Αποφασίστηκε να πραγματοποιηθεί ημερίδα τον Σεπτέμβριο με σκοπό να παρουσιαστούν τα αποτελέσματα της έρευνας πεδίου και των διαβουλεύσεων που πραγματοποιήθηκαν, καθώς και να δοθεί η ευκαιρία και στα τρία μέρη, ναυτιλιακές διαχειρίστριες εταιρίες – παρόχοι λογισμικού & επικοινωνιακών λύσεων – πολιτεία, να παρουσιάσουν τις νέες εξελίξεις στην ναυτιλιακή βιομηχανία σχετικά με το αντικείμενο του forum.
Το κείμενο στο σχεδίο τελικού παραδοτέο αποτελείται από την παράρτημα Β – Λίστα Συμμετεχόντων.

<table>
<thead>
<tr>
<th>Νο</th>
<th>Θέση</th>
<th>Όνομα</th>
<th>Επίθετο</th>
<th>Εταιρεία</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Συντα-</td>
<td>Νικήτας</td>
<td>Νικητάκος</td>
<td>Αναπληρωτής Καθηγητής Τμήμα Ναυτιλίας και Επιχειρηματικών Υπηρεσιών, Πανεπιστήμιο Αιγαίου</td>
</tr>
<tr>
<td>2</td>
<td>νιστής</td>
<td>Μαρία</td>
<td>Λάμπρου</td>
<td>Λέκτορας Τμήμα Ναυτιλίας και Επιχειρηματικών Υπηρεσιών, Πανεπιστήμιο Αιγαίου</td>
</tr>
<tr>
<td>3</td>
<td>Συντα-</td>
<td>Δημήτριος</td>
<td>Λυρίδης</td>
<td>Επίκουρος Καθηγητής Τμήμα Ναυτιπηγών και Μηχανολόγων Μηχανικών, ΕΜΠ</td>
</tr>
<tr>
<td>4</td>
<td>Rappo</td>
<td>Ευάγγελος</td>
<td>Στράτακος</td>
<td>Υποψήφιος Διδάκτορας, Τμήμα Ναυτιλίας και Επιχειρηματικών Υπηρεσιών, Πανεπιστήμιο Αιγαίου</td>
</tr>
<tr>
<td>5</td>
<td>Rappo</td>
<td>Κωνστάντινος</td>
<td>Δημήτριο</td>
<td>Υποψήφιος Διδάκτορας, Τμήμα Ναυτιπηγών και Μηχανολόγων Μηχανικών, ΕΜΠ</td>
</tr>
<tr>
<td>6</td>
<td>Μέλος</td>
<td>Γεώργιος</td>
<td>Καπογιάννης</td>
<td>ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΜΕΤΑΠΤΥΧΙΑΚΟΣ ΦΟΙΤΗΤΗΣ</td>
</tr>
<tr>
<td>7</td>
<td>Μέλος</td>
<td>Παπανικολάου</td>
<td>Χαραλαμπάκης</td>
<td>Πανεπιστήμιο Αιγαίου</td>
</tr>
<tr>
<td>8</td>
<td>Μέλος</td>
<td>Βασιλική</td>
<td>Πανακοπούλου</td>
<td>ΕΔΕΤ ΑΕ</td>
</tr>
<tr>
<td>9</td>
<td>Μέλος</td>
<td>Νικήτας</td>
<td>Γκανάς</td>
<td>Πανεπιστήμιο Αιγαίου</td>
</tr>
<tr>
<td>10</td>
<td>Μέλος</td>
<td>Σπύρος</td>
<td>Βουγιώς</td>
<td>ΒCΑ (Business College of Athens)</td>
</tr>
<tr>
<td>11</td>
<td>Μέλος</td>
<td>Δημήτρης</td>
<td>Παπανικολάου</td>
<td>ΕΜΠ</td>
</tr>
<tr>
<td>12</td>
<td>Μέλος</td>
<td>Νικος</td>
<td>Αναγνωστόπουλος</td>
<td>ΑΠΤ S.A.</td>
</tr>
<tr>
<td>13</td>
<td>Μέλος</td>
<td>Κατερίνα</td>
<td>Παπακονσταντίνου</td>
<td>ΕΔΕΤ</td>
</tr>
<tr>
<td>14</td>
<td>Μέλος</td>
<td>Ιωάννα</td>
<td>Καραγκιόλγου</td>
<td>eLab, The business! Lab</td>
</tr>
<tr>
<td>15</td>
<td>Μέλος</td>
<td>Σπύρος</td>
<td>Δήμου</td>
<td>TEMAGON</td>
</tr>
<tr>
<td>16</td>
<td>Μέλος</td>
<td>Αντώνιος</td>
<td>Λουρίδας</td>
<td>PALMERA E.Π.Ε.</td>
</tr>
<tr>
<td>17</td>
<td>Μέλος</td>
<td>Ιωάννης</td>
<td>Χριστοδούλακης</td>
<td>Ελεύθερος Εσπανγκλεματίας, Συνεργάτης της ΗΡ&Β Solutions</td>
</tr>
<tr>
<td>18</td>
<td>Μέλος</td>
<td>Γεράσιμος</td>
<td>Αρκετός</td>
<td>Πανεπιστήμιο Πειραιώς</td>
</tr>
<tr>
<td>19</td>
<td>Μέλος</td>
<td>Γιώργος</td>
<td>Τελώνης</td>
<td>Ferry Center</td>
</tr>
<tr>
<td>20</td>
<td>Μέλος</td>
<td>Άγγελος</td>
<td>Δημήτριας</td>
<td>ΑΡΤ S.A.</td>
</tr>
<tr>
<td>21</td>
<td>Μέλος</td>
<td>Νικόλαος</td>
<td>Φιλίππακης</td>
<td>ΛΙΜΕΝΙΚΟ ΤΑΜΕΙΟ ΧΕΡΣΟΝΗΣΟΥ</td>
</tr>
<tr>
<td>22</td>
<td>Μέλος</td>
<td>Σπύρος</td>
<td>Αλεξανδράτος</td>
<td>Αueb</td>
</tr>
<tr>
<td>23</td>
<td>Μέλος</td>
<td>Βασίλης</td>
<td>Ζειμέτκης</td>
<td>Οικονομικό Πανεπιστήμιο Αθηνών</td>
</tr>
<tr>
<td>24</td>
<td>Μέλος</td>
<td>Αθανάσιος</td>
<td>Γκιώνης</td>
<td>OPAP International LTD</td>
</tr>
<tr>
<td>25</td>
<td>Μέλος</td>
<td>Θεόδωρος</td>
<td>Λαγουδής</td>
<td>Nautical Systems</td>
</tr>
<tr>
<td>26</td>
<td>Μέλος</td>
<td>ΑΛΜΑ</td>
<td>TO</td>
<td>MY OWN</td>
</tr>
<tr>
<td>27</td>
<td>Μέλος</td>
<td>Απόστολος</td>
<td>Κούντρας</td>
<td>ΙΝΤΡΑΚΟΜ</td>
</tr>
<tr>
<td>28</td>
<td>Μέλος</td>
<td>Βασίλης</td>
<td>Κωστής</td>
<td>Oracle Hellas</td>
</tr>
<tr>
<td>29</td>
<td>Μέλος</td>
<td>Εμμανουήλ/Κωνσταντίνος</td>
<td>Μακρής</td>
<td>OTESAT-Maritel</td>
</tr>
<tr>
<td>30</td>
<td>Μέλος</td>
<td>Έρη</td>
<td>Λευθεριώτη</td>
<td>ΙΝΤΡΑΚΟΜ</td>
</tr>
<tr>
<td>31</td>
<td>Μέλος</td>
<td>Κατερίνα</td>
<td>Παπακονσταντίνου</td>
<td>ΕΔΕΤ</td>
</tr>
<tr>
<td>32</td>
<td>Μέλος</td>
<td>Σταμάτιος</td>
<td>Τσερκέζοπουλος</td>
<td>ΙΝΤΕΡΛΕΒ ΗΕΛΛΑΣ ΕΠΕ</td>
</tr>
</tbody>
</table>
Ηλεκτρονικές Υπηρεσίες και Εφαρμογές στη Ναυτιλία: Ισχύουσα Κατάσταση και Προοπτικές

33. Μέλος Πέτρος Βιολάκης Βιολάκης MARAC ELECTRONICS SA
34. Μέλος Αντώνης Καντιδάκης MARAC ELECTRONICS SA
35. Μέλος Λίνα Τζίβα ABC Professional Services
36. Μέλος Ιωάννης Φελεσάκης Alexandros M.N.E
37. Μέλος Σωτήρης Πετρόπουλος Χαροκόπειο Πανεπιστήμιο
38. Μέλος Χαράλαμπος Κωνσταντίνος Ινστιτούτο Βιομηχανικών Συστημάτων
39. Μέλος Παναγιώτης Νομικός ΑΜΜΙΤΕΚ - ΣΥΛΛΟΓΟΣ ΣΤΕΛΕΧΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ ΚΑΙ ΕΠΙΚΟΙΝΩΝΙΩΝ ΝΑΥΤΙΛΙΑΚΩΝ ΕΤΑΙΡΙΩΝ
40. Μέλος Ερνέστος Τζάνατος ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ
41. Μέλος Γεώργιος Παπαγεωργίου Fortune Technologies
42. Μέλος Ιωάννης Χοχλιούρος ΟΤΕ ΑΕ
43. Μέλος Κωνσταντίνος Καραγκούνης ΑΕΝ ΜΑΚΕΔΟΝΙΑΣ
44. Μέλος Χρήστος Θεοδόσης ΝEXTSOFT
45. Μέλος Ηλίας Καλοκαίρης FORTUNE TECHNOLOGIES
46. Μέλος Κωνσταντίνος Μπούμπας ALS ΠΛΗΡΟΦΟΡΙΚΗ Α.Ε.
47. Μέλος Ερνέστος Τζάνατος ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ
48. Μέλος Ζαφείρης Κωπαίδης FAIRSKY SHIPPING & TRADING S.A.
49. Μέλος Ιωάννης Χοχλιούρος ΟΤΕ ΑΕ
50. Μέλος Κωνσταντίνος Καραγκούνης ΑΕΝ ΜΑΚΕΔΟΝΙΑΣ
51. Μέλος Νικόλαος Καραγκούνης ΑΕΝ ΜΑΚΕΔΟΝΙΑΣ
52. Μέλος Κωνσταντίνος Καραγκούνης ΑΕΝ ΜΑΚΕΔΟΝΙΑΣ
53. Μέλος Αντώνης Φανάρης Βάλβης FAIRSKY SHIPPING & TRADING S.A.
54. Μέλος Ερνέστος Τζάνατος ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΙΡΑΙΩΣ
55. Μέλος Χρήστος Θεοδόσης ΝEXTSOFT
56. Μέλος Κωνσταντίνος Καραγκούνης ΑΕΝ ΜΑΚΕΔΟΝΙΑΣ
57. Μέλος Ιωάννης Χοχλιούρος ΟΤΕ ΑΕ
58. Μέλος Κωνσταντίνος Καραγκούνης ΑΕΝ ΜΑΚΕΔΟΝΙΑΣ
59. Μέλος Ερνέστος Τζάνατος ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΙΡΑΙΩΣ
<table>
<thead>
<tr>
<th>Μέλος</th>
<th>Επώνυμο</th>
<th>Παράδοτο</th>
</tr>
</thead>
<tbody>
<tr>
<td>70. Μέλος Χρήστος</td>
<td>Κωστάκης</td>
<td>Υ.Ε.Ν. - Διεύθυνση Πληροφορικής & Νέων Τεχνολογιών</td>
</tr>
<tr>
<td>71. Μέλος Δημόκριτος</td>
<td>Τζιρίτης</td>
<td>Eletson Corporation</td>
</tr>
<tr>
<td>72. Μέλος Εμμανουήλ</td>
<td>Καθρής</td>
<td>Danaos Management Consultants Ltd.</td>
</tr>
<tr>
<td>73. Μέλος Τάκης</td>
<td>Βαρελάς</td>
<td>Dreamtech Information Systems & Networks</td>
</tr>
<tr>
<td>74. Μέλος Γιάννης</td>
<td>Μανωλέσσος</td>
<td>Gourdomichalis Maritime S.A.</td>
</tr>
<tr>
<td>75. Μέλος Τάσος</td>
<td>Μακρής</td>
<td>SYSCOM - Computer Applications</td>
</tr>
<tr>
<td>76. Μέλος Χρήστος</td>
<td>Αντωνόπουλος</td>
<td>Shipping & Maritime Law Consultant</td>
</tr>
<tr>
<td>77. Μέλος Νικόλας</td>
<td>Ιωάννου</td>
<td>Business Developer</td>
</tr>
<tr>
<td>78. Μέλος Πέτρος</td>
<td>Μπίλλας</td>
<td>Maersk Hellas</td>
</tr>
<tr>
<td>79. Μέλος Κωνσταντινός</td>
<td>Βαβέκης</td>
<td>TOPLINK ELLAS EPE</td>
</tr>
<tr>
<td>80. Μέλος Ευάγγελος</td>
<td>Κάνναλλοπουλός</td>
<td>PIONEER TANKERS SHIP MANAGEMENT</td>
</tr>
<tr>
<td>81. Μέλος Θωμάς</td>
<td>Βισσόνις</td>
<td>OTE</td>
</tr>
<tr>
<td>82. Μέλος Πέτρος</td>
<td>Στέφανος</td>
<td>INMS</td>
</tr>
<tr>
<td>83. Μέλος Νικός</td>
<td>Καλλιτσης</td>
<td>MAERSK HELAS LTD</td>
</tr>
<tr>
<td>84. Μέλος Πέτρος</td>
<td>Μπίλλας</td>
<td>M-DATA</td>
</tr>
<tr>
<td>85. Μέλος Κωνσταντινός</td>
<td>Βαβέκης</td>
<td>HELLAS SAT</td>
</tr>
<tr>
<td>86. Μέλος Ευάγγελος</td>
<td>Παπαδόπουλος</td>
<td>ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ</td>
</tr>
<tr>
<td>87. Μέλος Κατερίνα</td>
<td>Θεοφιλοπούλου</td>
<td>PΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ</td>
</tr>
<tr>
<td>88. Μέλος Γιώργος</td>
<td>Χριστοδουλίου</td>
<td>DATATECH</td>
</tr>
<tr>
<td>89. Μέλος Στέφανος</td>
<td>Μπίλλας</td>
<td>ΠΟΛΙΧΡΟΝΙΟΥ</td>
</tr>
<tr>
<td>90. Μέλος Πέτρος</td>
<td>Καλλιτσης</td>
<td>ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ</td>
</tr>
<tr>
<td>91. Μέλος Γιώργος</td>
<td>Λάιος</td>
<td>ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ</td>
</tr>
<tr>
<td>92. Μέλος Γιώργος</td>
<td>Χαρλομπάτος</td>
<td>ΤΗΝΕΑΜΑΡΙΣ SHIPSMANAGEMENT</td>
</tr>
<tr>
<td>93. Μέλος Ιωάννου</td>
<td>Καλλιτσης</td>
<td>ΣΥΣΧΕΔΙΟ ΤΕΛΙΚΟΥ ΠΑΡΑΔΟΤΕΟΥ</td>
</tr>
<tr>
<td>94. Μέλος Γιώργος</td>
<td>Λάιος</td>
<td>ΡΟΥΜΑΝΗΣ SHIPSMANAGEMENT</td>
</tr>
<tr>
<td>95. Μέλος Γιώργος</td>
<td>Χριστοδούλου</td>
<td>OOSE</td>
</tr>
<tr>
<td>96. Μέλος Γιώργος</td>
<td>Αμφιλότης</td>
<td>ΡΟΥΜΑΝΗΣ SHIPSMANAGEMENT</td>
</tr>
<tr>
<td>97. Μέλος Γιώργος</td>
<td>Λάιος</td>
<td>ΡΟΥΜΑΝΗΣ SHIPSMANAGEMENT</td>
</tr>
<tr>
<td>98. Μέλος Αντώνιο</td>
<td>Λάιος</td>
<td>ΡΟΥΜΑΝΗΣ SHIPSMANAGEMENT</td>
</tr>
<tr>
<td>99. Μέλος Αντώνιο</td>
<td>Λάιος</td>
<td>ΡΟΥΜΑΝΗΣ SHIPSMANAGEMENT</td>
</tr>
<tr>
<td>100. Μέλος Γιώργος</td>
<td>Λάιος</td>
<td>ΡΟΥΜΑΝΗΣ SHIPSMANAGEMENT</td>
</tr>
<tr>
<td>101. Μέλος Γιώργος</td>
<td>Λάιος</td>
<td>ΡΟΥΜΑΝΗΣ SHIPSMANAGEMENT</td>
</tr>
<tr>
<td>102. Μέλος Καλλιτσης</td>
<td>Λάιος</td>
<td>ΡΟΥΜΑΝΗΣ SHIPSMANAGEMENT</td>
</tr>
<tr>
<td>103. Μέλος Καλλιτσης</td>
<td>Λάιος</td>
<td>ΡΟΥΜΑΝΗΣ SHIPSMANAGEMENT</td>
</tr>
<tr>
<td>104. Μέλος Γιώργος</td>
<td>Λάιος</td>
<td>ΡΟΥΜΑΝΗΣ SHIPSMANAGEMENT</td>
</tr>
<tr>
<td>105. Μέλος Γιώργος</td>
<td>Λάιος</td>
<td>ΡΟΥΜΑΝΗΣ SHIPSMANAGEMENT</td>
</tr>
<tr>
<td>106. Μέλος Καλλιτσης</td>
<td>Λάιος</td>
<td>ΡΟΥΜΑΝΗΣ SHIPSMANAGEMENT</td>
</tr>
<tr>
<td>107. Μέλος Καλλιτσης</td>
<td>Λάιος</td>
<td>ΡΟΥΜΑΝΗΣ SHIPSMANAGEMENT</td>
</tr>
</tbody>
</table>
Ηλεκτρονικές Υπηρεσίες και Εφαρμογές στη Ναυτιλία: Ισχύουσα Κατάσταση και Προοπτικές

<table>
<thead>
<tr>
<th>Μέλος</th>
<th>Ακαδημαϊκό Όνομα</th>
<th>Εταιρεία/Διαφάνεια</th>
</tr>
</thead>
<tbody>
<tr>
<td>108.</td>
<td>Μέλος Κατερίνα</td>
<td>Κώνστα</td>
</tr>
<tr>
<td>109.</td>
<td>Μέλος Δημήτριος</td>
<td>Αλεξάνδρου</td>
</tr>
<tr>
<td>110.</td>
<td>Μέλος Στυλιανός</td>
<td>Κοσκίνας</td>
</tr>
<tr>
<td>111.</td>
<td>Μέλος Θωμάς</td>
<td>Ζαβιτσάνος</td>
</tr>
<tr>
<td>112.</td>
<td>Μέλος Νίκος</td>
<td>Γκουντουλιάς</td>
</tr>
<tr>
<td>113.</td>
<td>Μέλος Γεώργιος</td>
<td>Ευγενίδης</td>
</tr>
<tr>
<td>114.</td>
<td>Μέλος Ανδρέας</td>
<td>Γιαννακούλης</td>
</tr>
<tr>
<td>115.</td>
<td>Μέλος Βαγιώνιτης</td>
<td>Παναγής</td>
</tr>
<tr>
<td>116.</td>
<td>Μέλος Τσακός Παναγής</td>
<td>Ανδρέας</td>
</tr>
<tr>
<td>117.</td>
<td>Μέλος Αλεξάνδρα</td>
<td>Κωνσταντίνη</td>
</tr>
<tr>
<td>118.</td>
<td>Μέλος Ανδρέας</td>
<td>Βασιλιάδης</td>
</tr>
<tr>
<td>119.</td>
<td>Μέλος Ανδρέας</td>
<td>Βασιλιάδης</td>
</tr>
<tr>
<td>120.</td>
<td>Μέλος Αλεξάνδρα</td>
<td>Κωνσταντίνη</td>
</tr>
<tr>
<td>121.</td>
<td>Μέλος Ανδρέας</td>
<td>Βασιλιάδης</td>
</tr>
<tr>
<td>122.</td>
<td>Μέλος Ανδρέας</td>
<td>Βασιλιάδης</td>
</tr>
<tr>
<td>123.</td>
<td>Μέλος Ανδρέας</td>
<td>Βασιλιάδης</td>
</tr>
<tr>
<td>124.</td>
<td>Μέλος Ανδρέας</td>
<td>Βασιλιάδης</td>
</tr>
<tr>
<td>125.</td>
<td>Μέλος Ανδρέας</td>
<td>Βασιλιάδης</td>
</tr>
<tr>
<td>126.</td>
<td>Μέλος Ανδρέας</td>
<td>Βασιλιάδης</td>
</tr>
<tr>
<td>127.</td>
<td>Μέλος Ανδρέας</td>
<td>Βασιλιάδης</td>
</tr>
<tr>
<td>128.</td>
<td>Μέλος Ανδρέας</td>
<td>Βασιλιάδης</td>
</tr>
<tr>
<td>129.</td>
<td>Μέλος Ανδρέας</td>
<td>Βασιλιάδης</td>
</tr>
<tr>
<td>130.</td>
<td>Μέλος Ανδρέας</td>
<td>Βασιλιάδης</td>
</tr>
<tr>
<td>131.</td>
<td>Μέλος Ανδρέας</td>
<td>Βασιλιάδης</td>
</tr>
<tr>
<td>132.</td>
<td>Μέλος Ανδρέας</td>
<td>Βασιλιάδης</td>
</tr>
<tr>
<td>133.</td>
<td>Μέλος Ανδρέας</td>
<td>Βασιλιάδης</td>
</tr>
<tr>
<td>134.</td>
<td>Μέλος Ανδρέας</td>
<td>Βασιλιάδης</td>
</tr>
<tr>
<td>135.</td>
<td>Μέλος Ανδρέας</td>
<td>Βασιλιάδης</td>
</tr>
</tbody>
</table>
Ηλεκτρονικές Υπηρεσίες και Εφαρμογές στη Ναυτιλία: Ισχύουσα Κατάσταση και Προοπτικές

ΠΑΡΑΡΤΗΜΑ Γ – Λίστα Εταιριών

Στον παρακάτω πίνακα παρουσιάζεται λίστα των εταιρειών παροχής λύσεων, ηλεκτρονικών αγορών, διαδικτυακών τόπων ενημέρωσης και εταιρειών ανάπτυξης και παροχής προϊόντων και εφαρμογών.

<table>
<thead>
<tr>
<th>Α/Α</th>
<th>ΕΤΑΙΡΙΑ</th>
<th>ΧΩΡΑ</th>
<th>ΣΥΝΔΕΣΜΟΣ</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>Adonis Data AS</td>
<td>Norway</td>
<td>http://www.adonis.no/</td>
</tr>
<tr>
<td>6</td>
<td>Advanced Global Communications</td>
<td>New Zealand</td>
<td>http://www.agci.co.nz/</td>
</tr>
<tr>
<td>7</td>
<td>Advanced New Technology</td>
<td>United Kingdom</td>
<td>http://www.a-n-t.net/</td>
</tr>
<tr>
<td>8</td>
<td>Aeoliki Marine Ltd</td>
<td>United Kingdom</td>
<td>http://www.aeoliki.co.uk/</td>
</tr>
<tr>
<td>13</td>
<td>Alicom Systems Ltd</td>
<td>United Kingdom</td>
<td>http://www.alicom.co.uk/</td>
</tr>
<tr>
<td>20</td>
<td>AO Chart Service</td>
<td>United States</td>
<td>http://www.clark.net/pub/thubin/aocs</td>
</tr>
<tr>
<td>24</td>
<td>Arena</td>
<td>Hong Kong</td>
<td>http://www.arena.com/</td>
</tr>
<tr>
<td>30</td>
<td>AVECSCorp AG</td>
<td>Germany</td>
<td>http://www.avecs.de/</td>
</tr>
<tr>
<td>34</td>
<td>Baseline Technology</td>
<td>United States</td>
<td>http://www.baseline.com/</td>
</tr>
<tr>
<td>35</td>
<td>BASS - Malaysia</td>
<td>Malaysia</td>
<td>http://www.bassnet.no/</td>
</tr>
<tr>
<td>39</td>
<td>Blue Peter Marine Systems</td>
<td>Australia</td>
<td>http://www.iinet.net.au</td>
</tr>
<tr>
<td>41</td>
<td>BMT Seatech Ltd - Southampton</td>
<td>United Kingdom</td>
<td>http://www.bmtseatech.co.uk/</td>
</tr>
<tr>
<td>Ηλεκτρονικές Υπηρεσίες και Εφαρμογές στη Ναυτιλία: Ισχύουσα Κατάσταση και Προοπτικές</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>---</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ομάδα Εργασίας H1 ΣΧΕΔΙΟ ΤΕΛΙΚΟΥ ΠΑΡΑΔΟΤΕΟΥ 111</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Αρ. Παρ.</th>
<th>Εταιρεία/Πρώτο τμήμα</th>
<th>Σημερική Υπηρεσίας</th>
<th>Σημερικός Απόλυτος Άξονας</th>
</tr>
</thead>
<tbody>
<tr>
<td>47</td>
<td>Bulgarian Ship Hydrodynamics</td>
<td>Bulgaria</td>
<td>http://www.bshc.bg/</td>
</tr>
<tr>
<td>48</td>
<td>Bureau Veritas - Courbevoie</td>
<td>France</td>
<td>http://www.bureauveritas.com/</td>
</tr>
<tr>
<td>49</td>
<td>Buermester & Vogel</td>
<td>Germany</td>
<td>http://www.bermester-vogel.com/</td>
</tr>
<tr>
<td>50</td>
<td>Burness Corlett - Three Quays</td>
<td>Isle of Man</td>
<td>http://www.bctq.com/</td>
</tr>
<tr>
<td>51</td>
<td>Captn Jack's Software Source</td>
<td>United States</td>
<td>http://www.capjack.com/</td>
</tr>
<tr>
<td>52</td>
<td>Caretronic Ingenieurburo GmbH</td>
<td>Germany</td>
<td>http://www.caretronic.de/</td>
</tr>
<tr>
<td>53</td>
<td>Cargosphere.com</td>
<td>United States</td>
<td>http://www.cargosphere.com/</td>
</tr>
<tr>
<td>54</td>
<td>Cargosuite.com</td>
<td>South Africa</td>
<td>http://www.cargosuite.com/</td>
</tr>
<tr>
<td>55</td>
<td>Celarix Inc</td>
<td>United States</td>
<td>http://www.celarix.com/</td>
</tr>
<tr>
<td>56</td>
<td>Celestaire</td>
<td>United States</td>
<td>http://www.celestaire.com/</td>
</tr>
<tr>
<td>57</td>
<td>Celesticomp Inc</td>
<td>United States</td>
<td>http://www.celesticomp.com/</td>
</tr>
<tr>
<td>58</td>
<td>Channel Logistics LLC</td>
<td>United States</td>
<td>http://www.channellogistics.com/</td>
</tr>
<tr>
<td>59</td>
<td>Chartwork Ltd</td>
<td>Norway</td>
<td>http://www.chartwork.com/</td>
</tr>
<tr>
<td>60</td>
<td>Chartworx Holland BV</td>
<td>Netherlands</td>
<td>http://www.chartworx.com/</td>
</tr>
<tr>
<td>61</td>
<td>Chase Information Tech Svcs (CNS)</td>
<td>United Kingdom</td>
<td>http://www.chaseits.co.uk/</td>
</tr>
<tr>
<td>62</td>
<td>CHH Lodestar</td>
<td>New Zealand</td>
<td>http://www.chhlodestar.com/</td>
</tr>
<tr>
<td>63</td>
<td>CINTRAval-Defcar</td>
<td>Spain</td>
<td>http://www.cintranaval-defcar.com/</td>
</tr>
<tr>
<td>64</td>
<td>C-MAP Srl</td>
<td>Italy</td>
<td>http://www.c-map.it/</td>
</tr>
<tr>
<td>65</td>
<td>CMC Ltd</td>
<td>India</td>
<td>http://www.cmcldr.com/</td>
</tr>
<tr>
<td>66</td>
<td>Coastal Research</td>
<td>United Kingdom</td>
<td>http://www.coastres.co.uk/</td>
</tr>
<tr>
<td>68</td>
<td>Community Network Svcs (CNS)</td>
<td>United Kingdom</td>
<td>http://www.cnsonline.net/</td>
</tr>
<tr>
<td>69</td>
<td>Compusult Ltd</td>
<td>Canada</td>
<td>http://www.compusult.nl.ca/</td>
</tr>
<tr>
<td>70</td>
<td>Computational Mechanics</td>
<td>United Kingdom</td>
<td>http://www.beasy.com/</td>
</tr>
<tr>
<td>71</td>
<td>Comspec Digital Products Inc</td>
<td>United States</td>
<td>http://www.comspecdpi.com/</td>
</tr>
<tr>
<td>72</td>
<td>Conmar - Marine Consulting</td>
<td>Croatia</td>
<td>http://www.conmar.hr/</td>
</tr>
<tr>
<td>73</td>
<td>Corbett & Holt/GMS</td>
<td>United States</td>
<td>http://www.corbettandholt.com/</td>
</tr>
<tr>
<td>74</td>
<td>Coretex</td>
<td>United States</td>
<td>http://www.coretex.org/</td>
</tr>
<tr>
<td>75</td>
<td>Cosmos NV</td>
<td>Belgium</td>
<td>http://www.cosmosworldwide.com/</td>
</tr>
<tr>
<td>76</td>
<td>Craig Ocean Systems Inc</td>
<td>United States</td>
<td>http://www.cos-inc.com/</td>
</tr>
<tr>
<td>77</td>
<td>Creative Systems Inc</td>
<td>United States</td>
<td>http://www.ghsport.com/</td>
</tr>
<tr>
<td>78</td>
<td>Crucial Software LLC</td>
<td>United States</td>
<td>http://www.crucialssoftware.com/</td>
</tr>
<tr>
<td>79</td>
<td>CS Logistics</td>
<td>Netherlands</td>
<td>http://www.coso.nl/</td>
</tr>
<tr>
<td>80</td>
<td>CyberMarine Information Ltd</td>
<td>India</td>
<td>http://www.cybermarine.net/</td>
</tr>
<tr>
<td>81</td>
<td>Cybernetics System</td>
<td>Korea (South)</td>
<td>http://www.cynetsys.co.kr/</td>
</tr>
<tr>
<td>82</td>
<td>Damcos AS</td>
<td>Denmark</td>
<td>http://www.damcos.com/</td>
</tr>
<tr>
<td>83</td>
<td>Danaos Management Consultants</td>
<td>Greece</td>
<td>http://www.danaos.com/</td>
</tr>
<tr>
<td>84</td>
<td>Dart Maritime Service Inc</td>
<td>United States</td>
<td>http://www.dartmaritime.com/</td>
</tr>
<tr>
<td>85</td>
<td>Datastream Systems</td>
<td>United Kingdom</td>
<td>http://www.datastream.com/</td>
</tr>
<tr>
<td>86</td>
<td>Davis Instruments</td>
<td>United States</td>
<td>http://www.davisnet.com/</td>
</tr>
<tr>
<td>87</td>
<td>Denar Chartering Inc</td>
<td>United States</td>
<td>http://www.lii.com/~denic</td>
</tr>
<tr>
<td>88</td>
<td>Design Systems & Technologies</td>
<td>France</td>
<td>http://www.des-t.com/</td>
</tr>
<tr>
<td>89</td>
<td>Det Norske Veritas Software</td>
<td>Norway</td>
<td>http://www2.dnv.com/software</td>
</tr>
<tr>
<td>90</td>
<td>DieselEngineTrader.com</td>
<td>United Kingdom</td>
<td>http://www.dieselenginetrader.com/</td>
</tr>
<tr>
<td>91</td>
<td>Digital Ship</td>
<td>United Kingdom</td>
<td>http://www.thedigitalship.com/</td>
</tr>
<tr>
<td>92</td>
<td>Dillon Technology Intl</td>
<td>United Kingdom</td>
<td>http://www.dillontec.co.uk/</td>
</tr>
<tr>
<td>93</td>
<td>Dimitrios Thomas Marine Ltd</td>
<td>Greece</td>
<td>http://www.thomasmarine.com/</td>
</tr>
<tr>
<td>94</td>
<td>Discovery Travel Systems</td>
<td>United States</td>
<td>http://www.discoveryts.com/</td>
</tr>
<tr>
<td>95</td>
<td>DNV Maritime Partner AS</td>
<td>Norway</td>
<td>http://www.dnv.com/maritime/dnvnavigator/</td>
</tr>
<tr>
<td>96</td>
<td>Dockside Marine Electronics</td>
<td>United States</td>
<td>http://www.dockside.com/</td>
</tr>
<tr>
<td>97</td>
<td>Dolphin Maritime Software Ltd</td>
<td>United Kingdom</td>
<td>http://www.dolphinmaritime.com/</td>
</tr>
<tr>
<td>98</td>
<td>DPN Software</td>
<td>United Kingdom</td>
<td>http://www.dpnsoftware.com/</td>
</tr>
<tr>
<td>99</td>
<td>Dialog AS</td>
<td>Norway</td>
<td>http://www.dialog.com/</td>
</tr>
<tr>
<td>100</td>
<td>EasyLink Services Corp</td>
<td>United Kingdom</td>
<td>http://www.easylink.com/</td>
</tr>
<tr>
<td>No.</td>
<td>Company Name</td>
<td>Country</td>
<td>Website</td>
</tr>
<tr>
<td>-----</td>
<td>--</td>
<td>----------------</td>
<td>--</td>
</tr>
<tr>
<td>101</td>
<td>Econ GmbH</td>
<td>Austria</td>
<td>http://www.eccon.biz/</td>
</tr>
<tr>
<td>102</td>
<td>EDO Corp</td>
<td>United States</td>
<td>http://www.edocorp.com/</td>
</tr>
<tr>
<td>103</td>
<td>EIWA AS</td>
<td>Denmark</td>
<td>http://www.eiva.dk/</td>
</tr>
<tr>
<td>104</td>
<td>eLading Software Inc</td>
<td>Canada</td>
<td>http://www.elading.com/</td>
</tr>
<tr>
<td>105</td>
<td>Elite Group Inc</td>
<td>United States</td>
<td>http://www.eliteint.com/</td>
</tr>
<tr>
<td>106</td>
<td>Elomatic/Cadmatic OY</td>
<td>Finland</td>
<td>http://www.cadmatic.com/</td>
</tr>
<tr>
<td>107</td>
<td>e-milles creations</td>
<td>Greece</td>
<td>http://www.emile.com/</td>
</tr>
<tr>
<td>109</td>
<td>Enfotec Technical Service Inc</td>
<td>Canada</td>
<td>http://www.enfotec.com/</td>
</tr>
<tr>
<td>110</td>
<td>Euronav Ltd</td>
<td>United Kingdom</td>
<td>http://www.euronav.co.uk/</td>
</tr>
<tr>
<td>111</td>
<td>Europacific Maritime Solutions</td>
<td>Australia</td>
<td>http://www.europacificglobal.com/</td>
</tr>
<tr>
<td>112</td>
<td>Eurotec Marine</td>
<td>Latvia</td>
<td>http://www.eurotec-m.com/</td>
</tr>
<tr>
<td>113</td>
<td>Evans International Ltd, John</td>
<td>United Kingdom</td>
<td>http://www.johnevansinternational.com/</td>
</tr>
<tr>
<td>114</td>
<td>Exis Technologies</td>
<td>United Kingdom</td>
<td>http://www.hazworld.com/</td>
</tr>
<tr>
<td>115</td>
<td>Ferry Management Services Ltd</td>
<td>United Kingdom</td>
<td>http://www.ferry-management.com/</td>
</tr>
<tr>
<td>116</td>
<td>Fidelio Cruise GmbH</td>
<td>Germany</td>
<td>http://www.fideliocruise.com/</td>
</tr>
<tr>
<td>117</td>
<td>Force Technology</td>
<td>Denmark</td>
<td>http://www.force.dk/</td>
</tr>
<tr>
<td>118</td>
<td>Forecast Systems Ltd</td>
<td>United Kingdom</td>
<td>http://www.micro-planning.co.uk/</td>
</tr>
<tr>
<td>119</td>
<td>Formation Design Systems Pty</td>
<td>Australia</td>
<td>http://www.formsys.com/</td>
</tr>
<tr>
<td>120</td>
<td>Forwarderlaw.com</td>
<td>Canada</td>
<td>http://www.forwarderlaw.com</td>
</tr>
<tr>
<td>121</td>
<td>Foure Lagadec</td>
<td>France</td>
<td>http://www.fourelagadec.com</td>
</tr>
<tr>
<td>122</td>
<td>FreightDesk Technologies</td>
<td>United States</td>
<td>http://www.freightdesk.com</td>
</tr>
<tr>
<td>123</td>
<td>Freightgate Inc</td>
<td>United States</td>
<td>http://www.freightgate.com</td>
</tr>
<tr>
<td>124</td>
<td>FWL Tech Ltd</td>
<td>United Kingdom</td>
<td>http://www.fwtech.com/</td>
</tr>
<tr>
<td>125</td>
<td>gasGenie.com Ltd</td>
<td>United Kingdom</td>
<td>http://www.gasgenie.com/</td>
</tr>
<tr>
<td>126</td>
<td>GasTOPS Ltd</td>
<td>Canada</td>
<td>http://www.gastops.com/</td>
</tr>
<tr>
<td>127</td>
<td>Gateway Software BV</td>
<td>Netherlands</td>
<td>http://www.gateway.nl/</td>
</tr>
<tr>
<td>128</td>
<td>General Acoustics GmbH</td>
<td>Germany</td>
<td>http://www.generalacoustics.com/</td>
</tr>
<tr>
<td>129</td>
<td>GeoAcoustics Ltd</td>
<td>United Kingdom</td>
<td>http://www.geoacoustics.com/</td>
</tr>
<tr>
<td>130</td>
<td>Geonav Ltd</td>
<td>United States</td>
<td>http://www.geonav.com/</td>
</tr>
<tr>
<td>131</td>
<td>GLM Lasermestechnik GmbH</td>
<td>Germany</td>
<td>http://www glm-laser.com/</td>
</tr>
<tr>
<td>132</td>
<td>Global Maritime</td>
<td>United Kingdom</td>
<td>http://www.globalmaritime.com/</td>
</tr>
<tr>
<td>134</td>
<td>Global Tracking Solutions Ltd</td>
<td>United States</td>
<td>http://www.globaltracking.com/</td>
</tr>
<tr>
<td>135</td>
<td>Globe Wireless, Corp HQ</td>
<td>United States</td>
<td>http://www.globewireless.com</td>
</tr>
<tr>
<td>137</td>
<td>GloMaP.com AG</td>
<td>Germany</td>
<td>http://www.gломap.com/</td>
</tr>
<tr>
<td>138</td>
<td>GoReefers International</td>
<td>Netherlands</td>
<td>http://www.goreefers.com/</td>
</tr>
<tr>
<td>139</td>
<td>Graphics Research Corp</td>
<td>United Kingdom</td>
<td>http://www.grc-ltd.co.uk/</td>
</tr>
<tr>
<td>140</td>
<td>GT Nexus</td>
<td>United States</td>
<td>http://www.gtnexus.com/</td>
</tr>
<tr>
<td>141</td>
<td>HAB Software GmbH & Co KG</td>
<td>Germany</td>
<td>http://www.hab-software.de/</td>
</tr>
<tr>
<td>142</td>
<td>Hamilton Global Navigation Ltd</td>
<td>Latvia</td>
<td>http://www.hamilton.lv/</td>
</tr>
<tr>
<td>143</td>
<td>Harbour Mastery Inc</td>
<td>United States</td>
<td>http://www.harbourmastery.com/</td>
</tr>
<tr>
<td>144</td>
<td>HDD Recovery Australia</td>
<td>Australia</td>
<td>http://www.hddrecovery.com/</td>
</tr>
<tr>
<td>145</td>
<td>Helintec SA</td>
<td>Greece</td>
<td>http://www.cordis.lu/</td>
</tr>
<tr>
<td>146</td>
<td>Herbert Engineering Corp</td>
<td>United States</td>
<td>http://www.herbert.com/</td>
</tr>
<tr>
<td>147</td>
<td>High-Tech Electronics Sdn Bhd</td>
<td>Malaysia</td>
<td>http://www.hte.com.my/</td>
</tr>
<tr>
<td>148</td>
<td>Hittec O AS</td>
<td>Norway</td>
<td>http://www.hittec-o.com/</td>
</tr>
<tr>
<td>149</td>
<td>Hogia Ferry Systems AB</td>
<td>Finland</td>
<td>http://www.hogia.fi/</td>
</tr>
<tr>
<td>150</td>
<td>Hornet Software/Claremont Ctl</td>
<td>United Kingdom</td>
<td>http://www.claremont-controls.co.uk/</td>
</tr>
<tr>
<td>151</td>
<td>Houston Marine Training</td>
<td>United States</td>
<td>http://www.houstonmarine.com/</td>
</tr>
<tr>
<td>152</td>
<td>HPC Hamburg Port Consulting</td>
<td>Germany</td>
<td>http://www.hpc-hamburg.de/</td>
</tr>
<tr>
<td>153</td>
<td>Hydrocomp Inc</td>
<td>United States</td>
<td>http://www.hydrocompinc.com</td>
</tr>
<tr>
<td>154</td>
<td>Hydrographic & Marine Cons</td>
<td>Netherlands</td>
<td>http://www.hmc.nl/</td>
</tr>
</tbody>
</table>
Ηλεκτρονικές Υπηρεσίες και Εφαρμογές στη Ναυτιλία: Ισχύουσα Κατάσταση και Προοπτικές

<table>
<thead>
<tr>
<th>Αριθμός</th>
<th>Εταιρεία/Company</th>
<th>Υπερσημείωση/Location</th>
<th>Ιστοσελίδα/Website</th>
</tr>
</thead>
<tbody>
<tr>
<td>156</td>
<td>Hydroservice AS</td>
<td>Norway</td>
<td>http://www.hydroservice.no/</td>
</tr>
<tr>
<td>159</td>
<td>IBS Software Services (P)</td>
<td>India</td>
<td>http://www.ibspcl.com/</td>
</tr>
<tr>
<td>160</td>
<td>Ideal Business Services Ltd</td>
<td>United Kingdom</td>
<td>http://www.idealbusinessservices.co.uk/</td>
</tr>
<tr>
<td>161</td>
<td>IHI Marine United Inc</td>
<td>Japan</td>
<td>http://www.ihi.co.jp/</td>
</tr>
<tr>
<td>165</td>
<td>InCoreTec Inc</td>
<td>Canada</td>
<td>http://www.incoretec.com/</td>
</tr>
<tr>
<td>167</td>
<td>Infobricks Technology (India)</td>
<td>India</td>
<td>http://www.infobricks.com/</td>
</tr>
<tr>
<td>170</td>
<td>Intech Solutions</td>
<td>United Kingdom</td>
<td>http://www.intechsolutions.co.uk/</td>
</tr>
<tr>
<td>179</td>
<td>Intl Submarine Engineering</td>
<td>Canada</td>
<td>http://www.ise.bc.ca/</td>
</tr>
<tr>
<td>184</td>
<td>ISIC AS</td>
<td>Denmark</td>
<td>http://www.isic.dk/</td>
</tr>
<tr>
<td>185</td>
<td>iSteelAsia.com</td>
<td>Hong Kong</td>
<td>http://www.isteelasia.com/</td>
</tr>
<tr>
<td>197</td>
<td>Livewire Digital Ltd</td>
<td>United Kingdom</td>
<td>http://www.livewire.co.uk/</td>
</tr>
<tr>
<td>200</td>
<td>Lloyd's Register of Shipping</td>
<td>United Kingdom</td>
<td>http://www.lr.org/accountmanager</td>
</tr>
<tr>
<td>204</td>
<td>Logimatic Group</td>
<td>Denmark</td>
<td>http://www.logimatic.dk/</td>
</tr>
<tr>
<td>207</td>
<td>Machina Networks AS</td>
<td>Norway</td>
<td>http://www.machina.no/</td>
</tr>
<tr>
<td>208</td>
<td>Macola UK Ltd</td>
<td>United Kingdom</td>
<td>http://www.macola.co.uk/</td>
</tr>
</tbody>
</table>
Ηλεκτρονικές Υπηρεσίες και Εφαρμογές στη Ναυτιλία: Ισχύουσα Κατάσταση και Προοπτικές

<table>
<thead>
<tr>
<th>Αριθμός</th>
<th>Εταιρεία</th>
<th>Υπηρεσία</th>
<th>Σελίδα</th>
<th>Ιστότοπος</th>
</tr>
</thead>
<tbody>
<tr>
<td>209</td>
<td>Macsea Ltd</td>
<td>United States</td>
<td>http://www.macsea.com/</td>
<td></td>
</tr>
<tr>
<td>210</td>
<td>Maersk Data Transport</td>
<td>Denmark</td>
<td>http://www.maerskdata-transport.com/</td>
<td></td>
</tr>
<tr>
<td>211</td>
<td>Malin Instruments Ltd</td>
<td>United Kingdom</td>
<td>http://www.malin.co.uk/</td>
<td></td>
</tr>
<tr>
<td>212</td>
<td>Mallioudakis Maritime Ltd</td>
<td>Greece</td>
<td>http://www.smmnet.com/</td>
<td></td>
</tr>
<tr>
<td>213</td>
<td>Manalytics International Inc</td>
<td>United States</td>
<td>http://www.manalytics.net/</td>
<td></td>
</tr>
<tr>
<td>214</td>
<td>Manpower Software Plc</td>
<td>United Kingdom</td>
<td>http://www.manpowersoftware.com/</td>
<td></td>
</tr>
<tr>
<td>215</td>
<td>Maptech Inc</td>
<td>United States</td>
<td>http://www.maptech.com/</td>
<td></td>
</tr>
<tr>
<td>216</td>
<td>Marconsult Srl</td>
<td>Italy</td>
<td>http://www.marconsult.it/</td>
<td></td>
</tr>
<tr>
<td>217</td>
<td>Marimatech AS</td>
<td>Denmark</td>
<td>http://www.marimatech.com/</td>
<td></td>
</tr>
<tr>
<td>218</td>
<td>Marincom Intl Systems</td>
<td>Canada</td>
<td>http://www.marincom.ca/</td>
<td></td>
</tr>
<tr>
<td>219</td>
<td>Marine Alignment AS</td>
<td>Denmark</td>
<td>http://www.easeacon.com/</td>
<td></td>
</tr>
<tr>
<td>220</td>
<td>Marine Computing Intl Ltd</td>
<td>United Kingdom</td>
<td>http://www.marinecomputing.com/</td>
<td></td>
</tr>
<tr>
<td>221</td>
<td>Marine Interface Inc</td>
<td>United States</td>
<td>http://www.marineinterface.com/</td>
<td></td>
</tr>
<tr>
<td>222</td>
<td>Marine Internet.Com Pte Ltd</td>
<td>Singapore</td>
<td>http://www.marineoffshore.com/</td>
<td></td>
</tr>
<tr>
<td>224</td>
<td>Marine Simulation Rotterdam BV</td>
<td>Netherlands</td>
<td>http://www.msr-r.nl/</td>
<td></td>
</tr>
<tr>
<td>225</td>
<td>Marine Software Ltd</td>
<td>United Kingdom</td>
<td>http://www.marinesoftware.co.uk/</td>
<td></td>
</tr>
<tr>
<td>226</td>
<td>Marine Structure Cons</td>
<td>Netherlands</td>
<td>http://www.msoffshore.nl/</td>
<td></td>
</tr>
<tr>
<td>227</td>
<td>Marine Trans AS</td>
<td>Norway</td>
<td>http://www.marinetrans.com/</td>
<td></td>
</tr>
<tr>
<td>228</td>
<td>Marine Transaction Services AS</td>
<td>Norway</td>
<td>http://www.martranserv.com/</td>
<td></td>
</tr>
<tr>
<td>229</td>
<td>MarineLogic LLC</td>
<td>United States</td>
<td>http://www.marinelogic.com/</td>
<td></td>
</tr>
<tr>
<td>231</td>
<td>MarineProvider ASA</td>
<td>Norway</td>
<td>http://www.marineprovider.com/</td>
<td></td>
</tr>
<tr>
<td>232</td>
<td>Mariner Group LLC, The</td>
<td>United States</td>
<td>http://www.commandbridge.com/</td>
<td></td>
</tr>
<tr>
<td>234</td>
<td>Mariner Systems Inc (MSI)</td>
<td>United States</td>
<td>http://www.marsys.com/</td>
<td></td>
</tr>
<tr>
<td>235</td>
<td>MarineSoft Entwicklungs</td>
<td>Germany</td>
<td>http://www.marinesoft.de/</td>
<td></td>
</tr>
<tr>
<td>236</td>
<td>MARINTEK - Norwegian Mar TRI</td>
<td>Norway</td>
<td>http://www.marintek.sintef.no/</td>
<td></td>
</tr>
<tr>
<td>237</td>
<td>MARIS</td>
<td>Netherlands</td>
<td>http://www.maris.nl/</td>
<td></td>
</tr>
<tr>
<td>238</td>
<td>Marisec Publications</td>
<td>United Kingdom</td>
<td>http://www.marisec.org/</td>
<td></td>
</tr>
<tr>
<td>239</td>
<td>Maritime Cargo Processing</td>
<td>United Kingdom</td>
<td>http://www.mcppcl.com/</td>
<td></td>
</tr>
<tr>
<td>240</td>
<td>Maritime Information Systems</td>
<td>United States</td>
<td>http://www.misdevelopment.com/</td>
<td></td>
</tr>
<tr>
<td>242</td>
<td>MaritimeChain.com Pte Ltd</td>
<td>Singapore</td>
<td>http://www.maritimechain.com/</td>
<td></td>
</tr>
<tr>
<td>243</td>
<td>MaritimeData Ltd</td>
<td>United Kingdom</td>
<td>http://www.maritimedata.com/</td>
<td></td>
</tr>
<tr>
<td>244</td>
<td>Marline Technologies Ltd</td>
<td>United States</td>
<td>http://www.marline.com/</td>
<td></td>
</tr>
<tr>
<td>245</td>
<td>Mar-Link Net</td>
<td>Argentina</td>
<td>http://www.mar-link.net/</td>
<td></td>
</tr>
<tr>
<td>246</td>
<td>Marsat South</td>
<td>Russia</td>
<td>http://www.marsat-south.ru/</td>
<td></td>
</tr>
<tr>
<td>247</td>
<td>MARSIG</td>
<td>Germany</td>
<td>http://www.marsig.com/</td>
<td></td>
</tr>
<tr>
<td>248</td>
<td>Marsoft Inc</td>
<td>United States</td>
<td>http://www.marsoft.com/</td>
<td></td>
</tr>
<tr>
<td>249</td>
<td>Maryland Nautical Sales</td>
<td>United States</td>
<td>http://www.mdnautical.com/</td>
<td></td>
</tr>
<tr>
<td>250</td>
<td>MasterShip</td>
<td>Netherlands</td>
<td>http://www.mastership.nl/</td>
<td></td>
</tr>
<tr>
<td>251</td>
<td>MaxSea International</td>
<td>France</td>
<td>http://www.maxsea.com/</td>
<td></td>
</tr>
<tr>
<td>252</td>
<td>MCS Group</td>
<td>Russia</td>
<td>http://www.mcs.ru/</td>
<td></td>
</tr>
<tr>
<td>254</td>
<td>Mentat Inc</td>
<td>United States</td>
<td>http://www.mentat.com/</td>
<td></td>
</tr>
<tr>
<td>255</td>
<td>MER Systems</td>
<td>Croatia</td>
<td>http://www.galiot.net/</td>
<td></td>
</tr>
<tr>
<td>256</td>
<td>Meridata Finland Ltd</td>
<td>Finland</td>
<td>http://www.meridata.fi/</td>
<td></td>
</tr>
<tr>
<td>257</td>
<td>Mespas Ltd</td>
<td>Switzerland</td>
<td>http://www.mespas.com/</td>
<td></td>
</tr>
<tr>
<td>258</td>
<td>MET Motoren GmbH</td>
<td>Germany</td>
<td>http://www.met-online.com/</td>
<td></td>
</tr>
<tr>
<td>259</td>
<td>Meteo Consult BV (SPOS)</td>
<td>Netherlands</td>
<td>http://www.spos.nl/</td>
<td></td>
</tr>
<tr>
<td>260</td>
<td>MeteoMer</td>
<td>France</td>
<td>http://www.meteomer.fr/</td>
<td></td>
</tr>
<tr>
<td>261</td>
<td>METOCEAN Data Systems Ltd</td>
<td>Canada</td>
<td>http://www.metocean.com/</td>
<td></td>
</tr>
<tr>
<td>262</td>
<td>Milbros Software AS</td>
<td>Norway</td>
<td>http://www.milbros.com/</td>
<td></td>
</tr>
</tbody>
</table>
Ηλεκτρονικές Υπηρεσίες και Εφαρμογές στη Ναυτιλία: Ισχύουσα Κατάσταση και Προοπτικές

<table>
<thead>
<tr>
<th>Αρ.</th>
<th>Αναφορά</th>
<th>Σημείωση</th>
</tr>
</thead>
<tbody>
<tr>
<td>263</td>
<td>Minitech Systems Ltd</td>
<td>United Kingdom</td>
</tr>
<tr>
<td>264</td>
<td>MISG Software Inc</td>
<td>United States</td>
</tr>
<tr>
<td>265</td>
<td>Mitsui Engineering & Shpbdg</td>
<td>Japan</td>
</tr>
<tr>
<td>266</td>
<td>Moore Stephens - UK</td>
<td>United Kingdom</td>
</tr>
<tr>
<td>267</td>
<td>Morintech Navigation AS</td>
<td>Norway</td>
</tr>
<tr>
<td>268</td>
<td>Morris Group UK Ltd</td>
<td>United Kingdom</td>
</tr>
<tr>
<td>269</td>
<td>Motion Smith</td>
<td>Singapore</td>
</tr>
<tr>
<td>270</td>
<td>MPRI Ship Analytics Inc</td>
<td>United States</td>
</tr>
<tr>
<td>271</td>
<td>Ms Logistik Systeme GmbH</td>
<td>Germany</td>
</tr>
<tr>
<td>272</td>
<td>Muller + Blanch Software GmbH</td>
<td>Germany</td>
</tr>
<tr>
<td>273</td>
<td>MundoMaritimo.cl Ltd</td>
<td>Chile</td>
</tr>
<tr>
<td>274</td>
<td>Napa Ltd</td>
<td>Finland</td>
</tr>
<tr>
<td>275</td>
<td>Nautical Institute, The</td>
<td>United Kingdom</td>
</tr>
<tr>
<td>276</td>
<td>Nauticos Corp</td>
<td>United States</td>
</tr>
<tr>
<td>277</td>
<td>Navicharts AS</td>
<td>Norway</td>
</tr>
<tr>
<td>278</td>
<td>Navingo BV</td>
<td>Netherlands</td>
</tr>
<tr>
<td>279</td>
<td>Navis LLC - USA</td>
<td>United States</td>
</tr>
<tr>
<td>280</td>
<td>Navitronic Systems AS</td>
<td>Denmark</td>
</tr>
<tr>
<td>281</td>
<td>NetManager Consulting</td>
<td>Spain</td>
</tr>
<tr>
<td>282</td>
<td>Network Telex</td>
<td>United Kingdom</td>
</tr>
<tr>
<td>283</td>
<td>New Wave Systems Inc</td>
<td>United States</td>
</tr>
<tr>
<td>284</td>
<td>Nilghtened Software Ltd</td>
<td>United Kingdom</td>
</tr>
<tr>
<td>286</td>
<td>Norcom Technology Ltd</td>
<td>United Kingdom</td>
</tr>
<tr>
<td>288</td>
<td>Novasys Inc</td>
<td>Canada</td>
</tr>
<tr>
<td>289</td>
<td>Numeriek Centrum Groningen BV</td>
<td>Netherlands</td>
</tr>
<tr>
<td>290</td>
<td>Observation Technologies</td>
<td>United States</td>
</tr>
<tr>
<td>291</td>
<td>Ocean Systems Inc</td>
<td>United States</td>
</tr>
<tr>
<td>292</td>
<td>OceanConnect.com Inc</td>
<td>United States</td>
</tr>
<tr>
<td>293</td>
<td>Oceanic Imaging Consultants</td>
<td>United States</td>
</tr>
<tr>
<td>294</td>
<td>Oceanus Software Co</td>
<td>United States</td>
</tr>
<tr>
<td>295</td>
<td>Oceanweather Inc</td>
<td>United States</td>
</tr>
<tr>
<td>296</td>
<td>Oceanwide.com</td>
<td>Canada</td>
</tr>
<tr>
<td>297</td>
<td>QDS - Petrodata Inc</td>
<td>United States</td>
</tr>
<tr>
<td>298</td>
<td>Ohmex Ltd</td>
<td>United Kingdom</td>
</tr>
<tr>
<td>299</td>
<td>Omni Tracking Systems Ltd</td>
<td>United Kingdom</td>
</tr>
<tr>
<td>300</td>
<td>Onboard-Napa Ltd</td>
<td>Finland</td>
</tr>
<tr>
<td>301</td>
<td>OnIX Software AS</td>
<td>Norway</td>
</tr>
<tr>
<td>302</td>
<td>Onsoft Computer Systems AS</td>
<td>Norway</td>
</tr>
<tr>
<td>303</td>
<td>Orcina Ltd</td>
<td>United Kingdom</td>
</tr>
<tr>
<td>304</td>
<td>OSI Applications</td>
<td>Canada</td>
</tr>
<tr>
<td>305</td>
<td>Owens Global Logistics</td>
<td>New Zealand</td>
</tr>
<tr>
<td>306</td>
<td>P&G Computer Comms Ltd</td>
<td>United Kingdom</td>
</tr>
<tr>
<td>307</td>
<td>Paterson Instruments Ltd</td>
<td>United Kingdom</td>
</tr>
<tr>
<td>308</td>
<td>PC Maritime Ltd</td>
<td>United Kingdom</td>
</tr>
<tr>
<td>309</td>
<td>PCR Terminal System Asia</td>
<td>Indonesia</td>
</tr>
<tr>
<td>310</td>
<td>PIERS</td>
<td>United States</td>
</tr>
<tr>
<td>311</td>
<td>Pole Star Space Applications</td>
<td>United Kingdom</td>
</tr>
<tr>
<td>312</td>
<td>Port & Maritime Cons BV</td>
<td>Netherlands</td>
</tr>
<tr>
<td>313</td>
<td>Portualia</td>
<td>Canary Islands</td>
</tr>
<tr>
<td>314</td>
<td>Portugues Hydrographic Inst</td>
<td>Portugal</td>
</tr>
<tr>
<td>315</td>
<td>Poten & Partners Inc</td>
<td>United States</td>
</tr>
<tr>
<td>Αριθμός</td>
<td>Εταιρεία</td>
<td>Κάποιος</td>
</tr>
<tr>
<td>---------</td>
<td>---------</td>
<td>---------</td>
</tr>
<tr>
<td>318</td>
<td>Prime Mover Controls Inc</td>
<td>Canada</td>
</tr>
<tr>
<td>320</td>
<td>Pronav AS</td>
<td>Norway</td>
</tr>
<tr>
<td>326</td>
<td>Reinhardt Software GmbH</td>
<td>Germany</td>
</tr>
<tr>
<td>328</td>
<td>Resuscitators (Marine)</td>
<td>United Kingdom</td>
</tr>
<tr>
<td>331</td>
<td>RINA - Genoa</td>
<td>Italy</td>
</tr>
<tr>
<td>337</td>
<td>SAM Electronics GmbH</td>
<td>Germany</td>
</tr>
<tr>
<td>339</td>
<td>SARC BV</td>
<td>Netherlands</td>
</tr>
<tr>
<td>342</td>
<td>Schema Ltd</td>
<td>Israel</td>
</tr>
<tr>
<td>346</td>
<td>Sea Information Systems</td>
<td>United Kingdom</td>
</tr>
<tr>
<td>348</td>
<td>Seafacs Information</td>
<td>United Kingdom</td>
</tr>
<tr>
<td>349</td>
<td>SeaFuture.com</td>
<td>Korea (South)</td>
</tr>
<tr>
<td>359</td>
<td>Servowatch Systems Ltd</td>
<td>United Kingdom</td>
</tr>
<tr>
<td>363</td>
<td>Shipboard Informatics Ltd</td>
<td>United Kingdom</td>
</tr>
<tr>
<td>368</td>
<td>Shipping Commercial</td>
<td>United Kingdom</td>
</tr>
<tr>
<td>Ιντερνετική Διεύθυνση</td>
<td>Κράτος</td>
<td>Χάρτης</td>
</tr>
<tr>
<td>---------------------</td>
<td>--------</td>
<td>-------</td>
</tr>
<tr>
<td>South Bay Simulations Inc</td>
<td>United States</td>
<td>http://www.panix.com/~brosen</td>
</tr>
<tr>
<td>SSPA Sweden AB</td>
<td>Sweden</td>
<td>http://www.sspa.se/</td>
</tr>
<tr>
<td>Strategic Dataworks Ltd</td>
<td>United Kingdom</td>
<td>http://www.strategicdataworks.co.uk/</td>
</tr>
<tr>
<td>SysOpen Digia Plc</td>
<td>Finland</td>
<td>http://www.sysopen.com/</td>
</tr>
<tr>
<td>Systems Consulting Ltd</td>
<td>United Kingdom</td>
<td>http://www.systems-consulting.co.uk/</td>
</tr>
<tr>
<td>Takara Tsusho Co Ltd</td>
<td>Japan</td>
<td>http://www.takara-online.co.jp/</td>
</tr>
<tr>
<td>Techno Fysica BV</td>
<td>Netherlands</td>
<td>http://www.technofysica.nl/</td>
</tr>
<tr>
<td>Technologic GmbH</td>
<td>Germany</td>
<td>http://www.schiffko.com/</td>
</tr>
<tr>
<td>Three Quays Marine Services</td>
<td>United Kingdom</td>
<td>http://www.threequays.com/</td>
</tr>
<tr>
<td>Total Soft Bank Ltd</td>
<td>Korea (South)</td>
<td>http://www.tsb.co.kr/</td>
</tr>
<tr>
<td>Άραβας</td>
<td>Εταιρεία ή Οργάνωση</td>
<td>Υπόκτησης</td>
</tr>
<tr>
<td>-------</td>
<td>-------------------</td>
<td>-----------</td>
</tr>
<tr>
<td>425</td>
<td>UK Hydrographic Office</td>
<td>United Kingdom</td>
</tr>
<tr>
<td>426</td>
<td>Ulysses Systems - Singapore</td>
<td>Singapore</td>
</tr>
<tr>
<td>427</td>
<td>Ulysses Systems UK Ltd</td>
<td>United Kingdom</td>
</tr>
<tr>
<td>428</td>
<td>UNCTAD</td>
<td>Switzerland</td>
</tr>
<tr>
<td>429</td>
<td>Unitel</td>
<td>Netherlands</td>
</tr>
<tr>
<td>430</td>
<td>Universal Systems Ltd</td>
<td>United Kingdom</td>
</tr>
<tr>
<td>431</td>
<td>Vacanti Yacht Design</td>
<td>United States</td>
</tr>
<tr>
<td>432</td>
<td>Valeport Ltd</td>
<td>United Kingdom</td>
</tr>
<tr>
<td>433</td>
<td>Vector Informatics Systems SA</td>
<td>Greece</td>
</tr>
<tr>
<td>434</td>
<td>Versonix Corp</td>
<td>United States</td>
</tr>
<tr>
<td>435</td>
<td>Veson Nautical Corp</td>
<td>United States</td>
</tr>
<tr>
<td>436</td>
<td>Videotel Marine International</td>
<td>United Kingdom</td>
</tr>
<tr>
<td>438</td>
<td>Vixsoft Systems Ltd</td>
<td>United Kingdom</td>
</tr>
<tr>
<td>439</td>
<td>Weathernews (UK) - Aberdeen</td>
<td>United Kingdom</td>
</tr>
<tr>
<td>440</td>
<td>Whidbey Island LLC</td>
<td>United States</td>
</tr>
<tr>
<td>441</td>
<td>Wipro Technologies</td>
<td>India</td>
</tr>
<tr>
<td>442</td>
<td>Wolfson Unit-Marine Tech</td>
<td>United Kingdom</td>
</tr>
<tr>
<td>443</td>
<td>Woods Hole Group</td>
<td>United States</td>
</tr>
<tr>
<td>444</td>
<td>World-Link Communications Inc</td>
<td>United States</td>
</tr>
<tr>
<td>446</td>
<td>Wynholds Co, Hans W</td>
<td>United States</td>
</tr>
<tr>
<td>447</td>
<td>Xanatos Marine Ltd</td>
<td>Canada</td>
</tr>
<tr>
<td>448</td>
<td>Xantic</td>
<td>Netherlands</td>
</tr>
<tr>
<td>449</td>
<td>Yokogawa Marex Ltd</td>
<td>United Kingdom</td>
</tr>
<tr>
<td>450</td>
<td>YORK Marine</td>
<td>Denmark</td>
</tr>
<tr>
<td>451</td>
<td>Zentech Inc</td>
<td>United States</td>
</tr>
<tr>
<td>452</td>
<td>Zephyr Services</td>
<td>United States</td>
</tr>
<tr>
<td>453</td>
<td>Zihua Software LLC</td>
<td>United States</td>
</tr>
</tbody>
</table>
Ηλεκτρονικές Υπηρεσίες και Εφαρμογές στη Ναυτιλία: Ισχύουσα Κατάσταση και Προοπτικές

ΠΑΡΑΡΤΗΜΑ Δ – Ερωτηματολόγιο

Το παρόν ερωτηματολόγιο έχει σκοπό να αποτυπώσει την υφιστάμενη κατάσταση χρήσης ηλεκτρονικών υπηρεσιών και εφαρμογών στην Ελληνική Ναυτιλία και τη διερεύνηση της πρόθεσης των χρηστών για την περαιτέρω ανάπτυξή τους. Απευθύνεται στις διαχειριστικές εταιρίες ποντοπόρων πλοίων, οι οποίες αποτελούν και την πλειοψηφία των ναυτιλιακών εταιριών στην Ελλάδα.

Τα στοιχεία συγκεντρώνονται για τις ανάγκες της Ομάδας Εργασίας H1 του e-business forum με θέμα: «Ηλεκτρονικές Υπηρεσίες και Εφαρμογές στη Ναυτιλία: Ισχύουσα Κατάσταση και Προοπτικές», θα αντιμετωπιστούν με απόλυτη εμπιστευτικότητα, και το αποτέλεσμα της επεξεργασίας τους θα παρουσιαστεί στο σχετικό παραδοτέο.
Ηλεκτρονικές Υπηρεσίες και Εφαρμογές στη Ναυτιλία: Ισχύουσα Κατάσταση και Προοπτικές

Ομάδα Εργασίας Η1

ΣΧΕΔΙΟ ΤΕΛΙΚΟΥ ΠΑΡΑΔΟΤΕΟΥ

120
A. Γενικές ερωτήσεις
1. Όνομα εταιρίας (*)
 Απάντηση:
2. Ονοματεπώνυμο (*)
 Απάντηση:
3. Θέση (*)
 Απάντηση:
4. Email (*)
 Απάντηση:
5. Εταιρική Ιστοσελίδα
 Απάντηση:
6. Πόσους εργαζόμενους απασχολεί συνολικά στο γραφείο;
 Απάντηση:
7. Απαντήστε εάν η διαχείριστρια εταιρία απασχολεί είτε εξειδικευμένο προσωπικό στην πληροφορική
 είτε εναλλακτικά περιλαμβάνεται στο οργανόγραμμα της εταιρίας τμήμα πληροφορικής/μηχανογράφησης:
 ☐ Ναι ☐ Όχι
8. Αν ναι, ποιος είναι ο αριθμός των εξειδικευμένων ατόμων;
 Απάντηση:
9. Ποιος λαμβάνει αποφάσεις σχετικά με τις επενδύσεις για Πληροφοριακές & Τηλεπικοινωνιακές Τεχνολογίες
 στην εταιρία (δηλώστε θέση εργασίας);
 Απάντηση:
Β. Πόσα πλοία, ανά τύπο, διαχειρίζεται σήμερα η εταιρία;

1. **Bulk carriers**
 - Αριθμός Πλοίων

2. **General Cargo / Multi purpose**
 - Αριθμός Πλοίων

3. **Crude tankers/ Product carriers**
 - Αριθμός Πλοίων

4. **Containerships**
 - Αριθμός Πλοίων

5. **Other – Define**
 - Είδος και Αριθμός Πλοίων

C. Ποιες από τις παρακάτω εργασίες παρακολουθούνται εσωτερικά (in-house) από σχετικό τμήμα και ποιες έχουν ανατεθεί σε εξωτερικούς συνεργάτες (outsource):

1. **Τεχνική Υποστήριξη Hardware**
 - [] In-house
 - [] Outsourced
 - [] Not Applicable

2. **Τεχνική Υποστήριξη Software (Λειτουργικό σύστημα/ Γενικές εφαρμογές)**
 - [] In-house
 - [] Outsourced
 - [] Not Applicable

3. **Τεχνική Υποστήριξη Software (Εξειδικευμένες ηλεκτρονικές εφαρμογές για τη Ναυτιλία)**
 - [] In-house
 - [] Outsourced
 - [] Not Applicable

4. **Τεχνική Υποστήριξη Εταιρικού Δικτύου**
 - [] In-house
 - [] Outsourced
 - [] Not Applicable
Ηλεκτρονικές Υπηρεσίες και Εφαρμογές στη Ναυτιλία: Ισχύουσα Κατάσταση και Προοπτικές

5. Τεχνική Υποστήριξη Εταιρικών Web εφαρμογών
 - In-house
 - Outsourced
 - Not Applicable

Ποιες από τις παρακάτω ναυτιλιακές διαδικασίες/εργασίες διευκολύνονται μέσω εγκατεστημένων εξειδικευμένων ηλεκτρονικών εφαρμογών:

1. Communications (internal/external) (*)
 - Δε βρίσκεται εγκατεστημένη σχετική εφαρμογή
 - Είναι εγκατεστημένη και χρησιμοποιείται από το (χρονολόγια):
 - Συνάδεται με εφαρμογή που υπάρχει στο πλοίο

2. Teleconference (Τηλεδιάσκεψη/Τηλεϊατρική) (*)
 - Δε βρίσκεται εγκατεστημένη σχετική εφαρμογή
 - Είναι εγκατεστημένη και χρησιμοποιείται από το (χρονολόγια):
 - Συνάδεται με εφαρμογή που υπάρχει στο πλοίο

3. Inventory Control (Provisions/ Stores/Spares) Έλεγχος Αποθεμάτων/Αναλώσιμων/Ανταλλακτικών (*)
 - Δε βρίσκεται εγκατεστημένη σχετική εφαρμογή
 - Είναι εγκατεστημένη και χρησιμοποιείται από το (χρονολόγια):
 - Συνάδεται με εφαρμογή που υπάρχει στο πλοίο

4. Electronic Procurement / Ηλεκτρονικές Προμήθειες (*)
 - Δε βρίσκεται εγκατεστημένη σχετική εφαρμογή
 - Είναι εγκατεστημένη και χρησιμοποιείται από το (χρονολόγια):
 - Συνάδεται με εφαρμογή που υπάρχει στο πλοίο
Ηλεκτρονικές Υπηρεσίες και Εφαρμογές στη Ναυτιλία: Ισχύουσα Κατάσταση και Προοπτικές

5. Διαχείριση ISM Code / ISPS (*)
 - Δε βρίσκεται εγκατεστημένη σχετική εφαρμογή
 - Είναι εγκατεστημένη και χρησιμοποιείται από το (χρονολογία):
 - Συνδέεται με εφαρμογή που υπάρχει στο πλοίο

6. Voyage Management / Διαχείριση Ταξιδίων (*)
 - Δε βρίσκεται εγκατεστημένη σχετική εφαρμογή
 - Είναι εγκατεστημένη και χρησιμοποιείται από το (χρονολογία):
 - Συνδέεται με εφαρμογή που υπάρχει στο πλοίο

7. Planned Maintenance / Ship Performance (*)
 - Δε βρίσκεται εγκατεστημένη σχετική εφαρμογή
 - Είναι εγκατεστημένη και χρησιμοποιείται από το (χρονολογία):
 - Συνδέεται με εφαρμογή που υπάρχει στο πλοίο

8. Crew / Human Resources (*)
 - Δε βρίσκεται εγκατεστημένη σχετική εφαρμογή
 - Είναι εγκατεστημένη και χρησιμοποιείται από το (χρονολογία):
 - Συνδέεται με εφαρμογή που υπάρχει στο πλοίο

9. Accounting / MGA (*)
 - Δε βρίσκεται εγκατεστημένη σχετική εφαρμογή
 - Είναι εγκατεστημένη και χρησιμοποιείται από το (χρονολογία):
Ηλεκτρονικές Υπηρεσίες και Εφαρμογές στη Ναυτιλία: Ισχύουσα Κατάσταση και Προοπτικές

10. Monitoring / Hull Maintenance (*)
 - Συνδέεται με εφαρμογή που υπάρχει στο πλοίο
 - Δε βρίσκεται εγκατεστημένη σχετική εφαρμογή
 - Είναι εγκατεστημένη και χρησιμοποιείται από το (χρονολογία):
 - Συνδέεται με εφαρμογή που υπάρχει στο πλοίο

11. SCADA (Supervisory Control And Data Acquisition) (*)
 - Συνδέεται με εφαρμογή που υπάρχει στο πλοίο

12. Training (*)
 - Συνδέεται με εφαρμογή που υπάρχει στο πλοίο

13. Insurance (*)
 - Συνδέεται με εφαρμογή που υπάρχει στο πλοίο

14. Loadicator (*)
 - Συνδέεται με εφαρμογή που υπάρχει στο πλοίο

- Δε βρίσκεται εγκατεστημένη σχετική εφαρμογή
- Είναι εγκατεστημένη και χρησιμοποιείται από το (χρονολογία):
- Συνδέεται με εφαρμογή που υπάρχει στο πλοίο
Ηλεκτρονικές Υπηρεσίες και Εφαρμογές στη Ναυτιλία: Ισχύουσα Κατάσταση και Προοπτικές

15. Ship Investment Analysis (*)
- Δε βρίσκεται εγκατεστημένη σχετική εφαρμογή
- Είναι εγκατεστημένη και χρησιμοποιείται από το (χρονολογία):
- Συνδέεται με εφαρμογή που υπάρχει στο πλοίο

16. Decision Support System (*)
- Δε βρίσκεται εγκατεστημένη σχετική εφαρμογή
- Είναι εγκατεστημένη και χρησιμοποιείται από το (χρονολογία):
- Συνδέεται με εφαρμογή που υπάρχει στο πλοίο

17. S & P (*)
- Δε βρίσκεται εγκατεστημένη σχετική εφαρμογή
- Είναι εγκατεστημένη και χρησιμοποιείται από το (χρονολογία):
- Συνδέεται με εφαρμογή που υπάρχει στο πλοίο

Ε. Διαδικασίες - Εφαρμογές

1. Σε ποιες από τις παρακάτω ναυτιλιακές διαδικασίες/εργασίες εξετάζεται στο άμεσο μέλλον η εγκατάσταση εξειδικευμένων ηλεκτρονικών εφαρμογών:
 - Communications (internal/external)
 - Teleconference (Τηλεδιάσκεψη/Τηλεϊατρική)
 - Inventory Control (Provisions/Stores/Spares)
 - Electronic Procurement
 - ISM / ISPS
 - Planned Maintenance
 - Crew / Human Resources
 - Monitoring / Hull
 - Voyage Management
 - SCADA
 - Training
 - Insurance

Ομάδα Εργασίας Η1 ΣΧΕΔΙΟ ΤΕΛΙΚΟΥ ΠΑΡΑΔΟΤΕΟΥ 126
Ηλεκτρονικές Υπηρεσίες και Εφαρμογές στη Ναυτιλία: Ισχύουσα Κατάσταση και Προοπτικές

<table>
<thead>
<tr>
<th>/ Ship Performance</th>
<th>Maintenance</th>
<th>(Supervisory Control And Data Acquisition)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Loadicator</td>
<td>Ship Investment Analysis</td>
<td>Decision Support System</td>
</tr>
</tbody>
</table>

2. Κατατάξτε κατά σειρά προτεραιότητας τα κίνητρα για την υιοθέτηση ηλεκτρονικών εφαρμογών (πέραν των απαιτούμενων από τις διεθνείς συμβάσεις): (*)

- Αύξηση της αποδοτικότητας
- Βελτίωση της ποιότητας υπηρεσιών
- Μείωση του κόστους
- Αύξηση της ασφάλειας
- Βελτίωση του εσωτερικού ελέγχου

3. Κατατάξτε κατά σειρά προτεραιότητας τα εμπόδια που θεωρείτε σημαντικότερα σχετικά με την υιοθέτηση νέων ηλεκτρονικών εφαρμογών: (*)

- Αρχικό κόστος εγκατάστασης
- Ετήσιο λειτουργικό κόστος
- Έλλειψη αξιοπιστίας / αποτελεσματικής τεχνικής υποστήριξης
- Έλλειψη συμβατότητας με υφιστάμενο πλαίσιο διαδικασιών
- Έλλειψη ασφάλειας περιεχομένου
- Έλλειψη προτύπων (standardization)
Ηλεκτρονικές Υπηρεσίες και Εφαρμογές στη Ναυτιλία: Ισχύουσα Κατάσταση και Προοπτικές

<table>
<thead>
<tr>
<th>Ανάγκη εξειδικευμένου προσωπικού</th>
</tr>
</thead>
</table>

4. Τι είδους πληροφορίες λαμβάνονται συστηματικά μέσω Διαδικτύου (Internet) από την εταιρία; (*)

- Web-based market information services
- S & P Information
- Chartering Fixtures
- Bunkering Information
- Weather Forecasts
- Ports’ Details
- Spare parts/ Provisions/ Stores Prices

F. Στα προαναφερθέντα πλοία, ποιες είναι οι εγκατεστημένες τηλεπικοινωνιακές υπηρεσίες ως προς την επικοινωνία με την ξηρά:

1. Bulk Carriers
 - Inmarsat A
 - Inmarsat B
 - Inmarsat C
 - Inmarsat Mini-C
 - Inmarsat Mini-M
 - Inmarsat Fleet 77
 - VSAT

2. General cargo/ Multi purpose
 - Inmarsat A
 - Inmarsat B
 - Inmarsat C
 - Inmarsat Mini-C
 - Inmarsat Mini-M
 - Inmarsat Fleet 77
 - VSAT

3. Crude tankers/ Product carriers
 - Inmarsat A
 - Inmarsat B
 - Inmarsat C
 - Inmarsat Mini-C
 - Inmarsat Mini-M
 - Inmarsat Fleet 77
 - VSAT

4. Containerships
 - Inmarsat A
 - Inmarsat B
 - Inmarsat C
 - Inmarsat Mini-C
 - Inmarsat Mini-M
 - Inmarsat Fleet 77
 - VSAT
Ηλεκτρονικές Υπηρεσίες και Εφαρμογές στη Ναυτιλία: Ισχύουσα Κατάσταση και Προοπτικές

<table>
<thead>
<tr>
<th></th>
<th>VSAT</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.</td>
<td>Other – Define</td>
</tr>
<tr>
<td></td>
<td>Inmarsat A</td>
</tr>
<tr>
<td></td>
<td>VSAT</td>
</tr>
</tbody>
</table>

G. Ποιες είναι οι εγκατεστημένες εξειδικευμένες ηλεκτρονικές εφαρμογές στα πλοία της εταιρίας;

1. Teleconference (Τηλεδιάσκεψη/Τηλεϊατρική)
 - Bulk Carriers | General cargo/ Multi purpose | Crude tankers/ Product carriers | Containerships |
 - Άλλο-Όπως συμπληρώθηκε στην ερώτηση B5

2. Inventory Control (Provisions/ Stores/Spares)
 - Bulk Carriers | General cargo/ Multi purpose | Crude tankers/ Product carriers | Containerships |
 - Άλλο-Όπως συμπληρώθηκε στην ερώτηση B5

3. Electronic Procurement
 - Bulk Carriers | General cargo/ Multi purpose | Crude tankers/ Product carriers | Containerships |
 - Άλλο-Όπως συμπληρώθηκε στην ερώτηση B5

4. ISM / ISPS
 - Bulk Carriers | General cargo/ Multi purpose | Crude tankers/ Product carriers | Containerships |
 - Άλλο-Όπως συμπληρώθηκε στην ερώτηση B5

5. Voyage Management
 - Bulk | General | Crude | Containerships |
 - Άλλο-Όπως
Ηλεκτρονικές Υπηρεσίες και Εφαρμογές στη Ναυτιλία: Ισχύουσα Κατάσταση και Προοπτικές

<table>
<thead>
<tr>
<th>ΣΧΕΔΙΟ ΤΕΛΙΚΟΥ ΠΑΡΑΔΟΤΕΟΥ</th>
<th>Ομάδα Εργασίας H1</th>
</tr>
</thead>
<tbody>
<tr>
<td>6. Planned Maintenance / Ship Performance</td>
<td>Βulk Carriers</td>
</tr>
<tr>
<td></td>
<td>General cargo/ Multi purpose</td>
</tr>
<tr>
<td></td>
<td>Crude tankers/ Product carriers</td>
</tr>
<tr>
<td></td>
<td>Containerships</td>
</tr>
<tr>
<td></td>
<td>Άλλο-Όπως συμπληρώθηκε στην ερώτηση Β5</td>
</tr>
<tr>
<td>7. Crew / Human Resources</td>
<td>Βulk Carriers</td>
</tr>
<tr>
<td></td>
<td>General cargo/ Multi purpose</td>
</tr>
<tr>
<td></td>
<td>Crude tankers/ Product carriers</td>
</tr>
<tr>
<td></td>
<td>Containerships</td>
</tr>
<tr>
<td></td>
<td>Άλλο-Όπως συμπληρώθηκε στην ερώτηση Β5</td>
</tr>
<tr>
<td>8. Accounting / MGA</td>
<td>Βulk Carriers</td>
</tr>
<tr>
<td></td>
<td>General cargo/ Multi purpose</td>
</tr>
<tr>
<td></td>
<td>Crude tankers/ Product carriers</td>
</tr>
<tr>
<td></td>
<td>Containerships</td>
</tr>
<tr>
<td></td>
<td>Άλλο-Όπως συμπληρώθηκε στην ερώτηση Β5</td>
</tr>
<tr>
<td>9. Monitoring / Hull Maintenance</td>
<td>Βulk Carriers</td>
</tr>
<tr>
<td></td>
<td>General cargo/ Multi purpose</td>
</tr>
<tr>
<td></td>
<td>Crude tankers/ Product carriers</td>
</tr>
<tr>
<td></td>
<td>Containerships</td>
</tr>
<tr>
<td></td>
<td>Άλλο-Όπως συμπληρώθηκε στην ερώτηση Β5</td>
</tr>
<tr>
<td>10. SCADA (Supervisory Control And Data Acquisition)</td>
<td>Βulk Carriers</td>
</tr>
<tr>
<td></td>
<td>General cargo/ Multi purpose</td>
</tr>
<tr>
<td></td>
<td>Crude tankers/ Product carriers</td>
</tr>
<tr>
<td></td>
<td>Containerships</td>
</tr>
<tr>
<td></td>
<td>Άλλο-Όπως συμπληρώθηκε στην ερώτηση Β5</td>
</tr>
<tr>
<td>11. Training</td>
<td>Βulk Carriers</td>
</tr>
<tr>
<td></td>
<td>General cargo/</td>
</tr>
<tr>
<td></td>
<td>Crude tankers/</td>
</tr>
<tr>
<td></td>
<td>Containerships</td>
</tr>
<tr>
<td></td>
<td>Άλλο-Όπως συμπληρώθηκε</td>
</tr>
</tbody>
</table>
Ηλεκτρονικές Υπηρεσίες και Εφαρμογές στη Ναυτιλία: Ισχύουσα Κατάσταση και Προοπτικές

Μαθητές	Πλοιοκτήτης	
Multi purpose	Product carriers	στην ερώτηση B5

12. Loadicator

- **Bulk Carriers**: General cargo/Multi purpose
- **Crude carriers**: Product carriers
- **Containerships**: Αλλο-Όπως συμπληρώθηκε στην ερώτηση B5

13. Decision Support System

- **Bulk Carriers**: General cargo/Multi purpose
- **Crude carriers**: Product carriers
- **Containerships**: Αλλο-Όπως συμπληρώθηκε στην ερώτηση B5

H. Νέες Ηλεκτρονικές Εφαρμογές

1. Σε ποιες από τις παρακάτω ναυτιλιακές εργασίες εξετάζεται στο άμεσο μέλλον η εγκατάσταση εξειδικευμένων ηλεκτρονικών εφαρμογών στο πλοίο:

<table>
<thead>
<tr>
<th>Communications (internal/external)</th>
<th>Teleconference (Τηλεδιάσκεψη/Τηλεϊατρική)</th>
<th>Inventory Control (Provisions/Stores/Spares)</th>
<th>Electronic Procurement</th>
<th>ISM / ISPS</th>
<th>Voyage Management</th>
</tr>
</thead>
<tbody>
<tr>
<td>Planned Maintenance / Ship Performance</td>
<td>Crew / Human Resources</td>
<td>Accounting / MGA</td>
<td>Monitoring / Hull Maintenance</td>
<td>SCADA (Supervisory Control And Data Acquisition)</td>
<td>Training</td>
</tr>
<tr>
<td>Insurance</td>
<td>Loadicator</td>
<td>Ship Investment Analysis</td>
<td>Decision Support System</td>
<td>S & P</td>
<td></td>
</tr>
</tbody>
</table>

2. Τι είδους πληροφορίες λαμβάνονται συστηματικά μέσω Διαδικτύου (Internet) από το πλοίο:

<table>
<thead>
<tr>
<th>Web-based market information services</th>
<th>Bunkering Information</th>
<th>Weather Forecasts</th>
<th>Infotainment</th>
<th>Ports’ Details</th>
<th>Spare parts/Provisions/Stores Prices</th>
</tr>
</thead>
</table>

ΣΧΕΔΙΟ ΤΕΛΙΚΟΥ ΠΑΡΑΔΟΤΕΟΥ

Ομάδα Εργασίας H1
Ηλεκτρονικές Υπηρεσίες και Εφαρμογές στη Ναυτιλία: Ισχύουσα Κατάσταση και Προοπτικές

1. Συνδέεται η εταιρία ή/και το πλοίο ηλεκτρονικά με:
 1. B2B Marketplaces
 □ Εταιρία
 □ Πλοίο
 2. Προμηθευτές
 □ Εταιρία
 □ Πλοίο
 3. Πελάτες
 □ Εταιρία
 □ Πλοίο
 4. Ιδιωτικούς ή Δημόσιους Οργανισμούς
 □ Εταιρία
 □ Πλοίο