

Disclaimer:

This document is subject to change without notice.

 2003, Mobile Electronic Transaction, Ltd. All Rights Reserved. Terms and conditions of use are available from MeT.

www.mobiletransaction.org

MeT Ltd

MeT Wallet Concept Description Version 1.0

Mobile electronic Transactions Ltd.

MeT-Wallet-Concept-v1_0-20030922

MeT Ltd

MeT-Wallet -Concept-v1_0-20030922

Page 2(43)

Contents
1. SCOPE..4

2. DOCUMENT STATUS ..5
2.1 VERSION HISTORY ...5
2.2 ERRATA ...5

3. REFERENCES ...6

4. WALLET AS A CONCEPT..7

5. REFERENCE ARCHITECTURE..8
5.1 ROUTER...8
5.2 WALLET EXTENSIONS ... 10
5.3 CLIENTS... 11
5.4 SPECIAL EXTENSIONS - SECURE STORAGE, SMART CARD ACCESS .. 11
5.5 TRUSTED DIALOGUE... 12

6. EXAMPLE.. 13
6.1 INITIAL STATE.. 13
6.2 MIDLET EXTENSION LOADED... 13
6.3 MIDLET EXTENSION IN ACTION .. 14
6.4 MIDLET AS A CLIENT .. 15

7. USE CASES .. 17
7.1 TERMINAL-BASED TICKETS .. 17
7.2 BANKING IDENTIFICATIO N.. 19
7.3 SMART CARD STORED VALUE PAYMENT ... 21
7.4 RECEIPTS MANAGEMENT... 23

8. ACCESSING THE WALLET ... 26
8.1 PROGRAMMATIC ENVIRONMENTS.. 26
8.2 WALLET SHELL .. 26
8.3 REMOTE ACCESS ... 26

9. CREATING EXTENSIONS .. 28
9.1 PROGRAMMATIC ENVIRONMENTS.. 28
9.2 SMART CARD .. 28
9.3 REMOTE EXTENSIONS ... 28
9.4 PROVISIONING .. 29

10. SECURITY AND IDENTIFICATION ... 30
10.1 TRUSTED ROLE OF THE ROUTER ... 30
10.2 SECURITY AND ENVIRONMENTS... 30
10.3 ACCESS CONTROL .. 30
10.4 MUTUAL IDENTIFICATION.. 31
10.5 SEVERAL SECURITY TECHNOLOGIES... 31

11. USER INTERACTION... 32
11.1 WALLET SHELL ... 32
11.2 TRUSTED DIALOGUE .. 32

12. ROLE OF SMART CARD ... 35
12.1 SMART CARD AS AN EXTENSION... 35
12.2 SMART CARD AND SECURE STORAGE.. 36
12.3 ROLE OF SIM ... 36

13. SECURE STORAGE .. 37

14. DEPLOYMENT .. 38

MeT Ltd

MeT-Wallet -Concept-v1_0-20030922

Page 3(43)

14.1 ROUTER.. 39
14.2 TRUSTED DIALOGUE .. 39
14.3 TRUSTED DIALOGUE FOR MIDLETS .. 40
14.4 WALLET SHELL... 40
14.5 MIDLET SHELL REGISTRATION... 41
14.6 MIDLET ACCESSING OTHER MIDLETS... 42
14.7 MIDLET ACCESS TO SMART CARDS ... 42
14.8 SECURE STORAGE.. 42
14.9 MIDLET ACCESS TO SECURE STORAGE.. 43

MeT Ltd

MeT-Wallet -Concept-v1_0-20030922

Page 4(43)

1. Scope
The development of mobile commerce is transforming the mobile phone into a trusted repository of
commerce-related information - the Personal Trusted Device (PTD). This transformation requires from the
PTD new means to satisfy the growing variety of mobile commerce applications in areas such as mobile
banking, payment, ticketing and secure access-based services.

MeT addresses those needs by the concept of MeT Wallet - the conceptual place in the PTD through which
the user can access information that is related to mobile commerce. At the same time MeT Wallet offers the
convenient platform for service providers to deploy a variety of commerce-related services to the satisfaction
of the user.

MeT recognises that successful adoption of the MeT framework depends on global acceptance of the PTD
by end users. In order to facilitate and encourage mass mobile acceptance, the MeT Wallet platform is
needed to encourage and accommodate the consistent deployment of independent services.

This document describes the core concept of the MeT Wallet in terms of architecture, functionality and
deployment. Further, it discusses the relationship between the MeT Wallet and other concepts.

MeT Ltd

MeT-Wallet -Concept-v1_0-20030922

Page 5(43)

2. Document status
The current version of this document is available online at www.mobiletransaction.org.

2.1 Version History
Version Date Working Group Description

0.1 19.06.2003 MeT Concept Group Initial Version

0.2 29.07.2003 MeT Concept Group First Revision

0.3 07.08.2003 MeT Concept Group Changes to reference model

0.4 15.08.2003 MeT Concept Group Use-cases added

0.5 12.09.2003 MeT Concept Group Comments from MeT Wallet workshop,
example added

2.2 Errata

MeT Ltd

MeT-Wallet -Concept-v1_0-20030922

Page 6(43)

3. References
OMA provisioning www.openmobilealliance.org

MeT core specification www.mobiletransactions.org

MeT CUE www.mobiletransactions.org

JCP www.jcp.org

J2ME http://java.sun.com/j2me/.

MIDP http://java.sun.com/products/midp/
Symbian http://www.symbian.com/

BREW http://www.qualcomm.com/brew/

JSR-177 http://www.jcp.org/en/jsr/detail?id=177

MeT Ltd

MeT-Wallet -Concept-v1_0-20030922

Page 7(43)

4. Wallet as a concept
Mobile phones are increasingly becoming open platforms. This trend is visible regardless of the geographic
market or communication technology, through solutions such as Symbian [Symbian], Java (J2ME) [J2ME,
MIDP], and Brew [BREW].

The current deployment of mobile commerce follows two trends. The first trend tentatively accepts the
existing mobile terminal with its existing, mostly built-in functionality as it is today but demands additional
security. Another trend would like to utilise the growing openness of the mobile terminal to deploy specific
mobile commerce applications into the terminal. Again, increased security is required.

This second trend, the combination of increased platform openness and increased demand for security, is
the driving force for the concept of the MeT Wallet. The MeT Wallet is the platform where different players
may deploy their commerce-specific applications in different configurations while defining and maintaining
security level as required by their businesses.

The MeT Wallet draws a lot from the concept that has been successful with smart cards: hiding sensitive
data inside the secure environment and making them available in a controlled way through specific
functions. At the same time the MeT Wallet demonstrates how such a concept can be leveraged from the
closed environment of the smart card to the mobile terminal as a whole, addressing issues such as the
multiplicity of environments, user interaction, and service invocation.

The wallet can be seen as a generalised provider of secure services. The secure service is the functionality
that encapsulates sensitive data so that they can be accessed only by specific functions. The secure service
therefore bears the following properties:

• ability to hide sensitive data and make them indirectly available only through service
• all the sensitive user interaction is handled within the service
• access to services that may can be controlled

The wallet does not define what constitutes the sensitivity, as the sensitivity may be interpreted differently,
depending on application area. Instead, the wallet provides a platform that may be used to deploy secure
services, regardless of the exact area of applications.

The MeT Wallet is a platform that allows developers to register their applications with the wallet, as wallet
extensions. These extensions may be written for different environments.. Each wallet extension may expose
several services that may be called by other applications, whether at the same terminal or over the network,
or invoked directly by the user. The MeT Wallet provides convenient means for both the user and the
application to identify what services from different extensions are available. The extension may control the
visibility of its services to applications and is always informed about the identity of the application that is
calling the service. Extensions registered with the wallet may further utilise the secure storage and other
standard extensions.

The wallet does not enforce all its extensions to behave as secure service providers. The wallet
recommends and provides guidelines for developers of extensions to facilitate the process of writing secure
services. The wallet expects that several application areas will develop their own practices how to write
secure and compatible extensions.

The MeT Wallet has been designed with mobile commerce in mind. However, the generic ability to call
services between environments, combined with access control and mutual authentication of the caller and
called application may make the wallet attractive to other application areas as well.

MeT Ltd

MeT-Wallet -Concept-v1_0-20030922

Page 8(43)

5. Reference architecture
The MeT Wallet can be defined in terms of its reference architecture, as depicted below.

 wallet

router

clients

extensions
wallet shell

native
applications

3rd party
applications

protocols

smart cards

native
extensions

3rd party
extensions

protocols

secure storage

trusted
dialogue

The core feature of the wallet is to deliver the ability for application clients to identify and invoke one or more
of extensions. Specifically, one of the clients can be the wallet shell that allows the user to directly invoke
extensions through the device user interface.

For the purpose of invocation, the wallet provides the router that allows extensions to register with the wallet,
to be discovered and securely invoked by clients. Extensions may call other wallet extensions, in particular
secure storage and smart cards. They can also use the trusted dialogue.

5.1 Router
The router provides invocation capability to clients, as well as registration and access to trusted dialogue to
wallet extensions. The router is the key element of the wallet architecture.

The router works across environments, allowing any client to call any extension, regardless of its actual
implementation, even though certain restrictions may apply. The router provides all the necessary interfacing
means to translate call methods and data formats between clients and extensions.

The router functionality may not be directly visible to all the clients and extensions, as it is provided through
different means, depending on the characteristics of the particular environment.

5.1.1 Registration
The router allows extensions to register with the wallet. The router does not verify or validate the origin of the
extension, allowing every properly formed application to register itself with the wallet as an extension.

When the extension is registered, the router creates the registration entry. Such entry stores the reference to
the extension as well as all the related registration parameters. The extension itself can be located in any
place in the mobile device (e.g. together with other applications of the same type) as long as the router can
access and invoke it.

MeT Ltd

MeT-Wallet -Concept-v1_0-20030922

Page 9(43)

Each extension may register itself several times with the wallet, each time providing a different set of
registration-specific data. Every registration causes the router to create the new entry. This allows the
extension to handle several objects of the same kind as several registration entries.

The registration should be handled at the time the extension is provisioned. The registration can be also
performed dynamically when the extension is being invoked The dynamic registration may depend on the
environment of the extension.

It is possible to deregister one or more registration entries of the same extension. If the extension is removed
from the system, all its registration entries are removed. Special support for updates of the extension should
be defined so that the new version of the extension may inherit all the registrations from the previous one.

The router may implement certain means to automatically discover and register extensions as they become
available to the terminal. For example, extensions located on the smart card may be discovered when the
card is inserted.

5.1.2 Identification
The wallet provides means for the client to identify what extensions are available to the client for invocation.
The exact method available for the client depends on the client environment. In some environments an API
may be preferred, while in others integration with existing mechanisms may be preferred.

The MeT Wallet shell plays a special role in the identification process, as it presents extensions directly to
the user. In order to facilitate this identification, the extension may provide additional registration information
that helps arrange the interface, like informative name, picture or the type of the extension.

As a part of its access control an extension may expose the fact of its existence only to some environments
or only to some clients. For example, not all extensions may want to be visible through the wallet shell.

5.1.3 Invocation
The client may call any registered extension. The exact implementation of the invocation method depends
on the environment the client is calling from, and it is independent of the environment the extension executes
in. It may be possible for the client and the extensions to obtain details of actual environments of their
counter-parties.

The invocation is always synchronous, i.e. the call from the client waits for the extension to complete its task.
If the client can handle multi-tasking then it can proceed with its own tasks while waiting for the extension.
Otherwise the client is suspended.

Whether the particular extension can be re-entered (i.e. called more than once at the same time) depends
on capabilities of the environment and properties of the extension. The wallet neither requires nor assumes
re-entrancy, but allows extensions to utilise re-entrancy if they support it. The wallet does not currently define
the relationship between the invocation and the instantiation of the extension.

The wallet does not implement callback methods (where the extension calls the client), but such methods
may be used as a part of the actual interface at the client or extension side. Similarly the wallet does not
define any specific method that allows an extension to pass large amount of data back to the client. Some
extensions may utilise environment-specific messaging, file sharing or similar techniques, using the wallet
invocation to pass the reference to such data.

5.1.4 Access control
The router provides access control to identify both parties and then selectively allow client to access
extensions.

The router identifies both parties (the client and the extension), using techniques dependent on the
environment. The router does not identity the extension or the client by itself, but it relies on the environment
to perform the identification for the wallet. For example, Java MIDlet may be identified by its trusted domain,
as defined by MIDP2.0 while the remote client may be identified by the certificate used by the protocol to
secure the connection.

MeT Ltd

MeT-Wallet -Concept-v1_0-20030922

Page 10(43)

Each extension may publish its access control preferences that list which clients from what environments are
allowed to discover and/or invoke the extension. For example, extensions may prefer not to be available
from the wallet shell or they may accept invocations only from clients provided by affiliated business
partners. These access control preferences of the extensions are used by the router and will not be available
to the clients.

During the identification process or latest during the invocation the router may exchange identification
information of the client and the extension so that both parties are informed of the identity of the other party.
This information can be used by either party to process or decline further information exchange.

The concept of access control assumes that all parties trust in the platform (mobile terminal) to properly
implement access control. The trust seems to be justified as parties already trust the platform to properly
implement environments, communication protocols etc.

Access control may be perceived differently in different environments, depending on capabilities of the given
environment. Specifically, the extent the access control is available may differ between environments. The
MeT Wallet defines minimum requirements for each environment regarding access control.

5.2 Wallet extensions
Wallet extensions deliver functionality that can be invoked by the client. The most important role of an
extension is to deliver a wealth of services to the user in a secure manner. The extension may hold
confidential data, which is not disclosed directly to clients. In this respect, the extension acts as a large
'smart card', guarding access to its internal data and providing limited access through selected APIs.

An extension may for example implement a stored value payment system. The current balance may be
stored in the secure storage (which is one of the standard extensions). The balance can be delivered by the
extension directly to the user when called from any client (including the wallet shell), but payment and reload
operations may require clients that are known to the extension or clients that are able to communicate with
the central server. No other access methods are allowed.

An extension may be embedded in the terminal's basic software ('native' extension) or it may be
downloadable from third-party developers. An extension may reside on the terminal memory, in a smart
card, in a removable storage media or on a remote server, securely accessible through MeT Wallet
protocols.

Wallet extension may be implemented in a different environment than the client, with invocation through the
router. For instance the extension may be called directly from the wallet shell.

The extension itself is usually an application, with all the relevant rights to use whatever mechanisms are
available in the given environment. For example, an extension that is implemented as Java MIDlet may
access all the mechanisms that are normally available for MIDlets. Specifically, an extension may
communicate with the user, may exchange information with remote servers or it may use other elements of
the terminal hardware or software. The MeT Wallet does not preclude the extension from using any of those
features, nor does it impose any special restrictions.

Extensions may access smart cards if appropriate mechanisms are provided by respective environments.
The role of smart cards is discussed in details later in this document.

Extensions can act as clients and can also identify and invoke other extensions. In particular, an extension
can always call standard extensions: secure storage and smart cards. The ability to call an arbitrary
extension (not the standard one) may be restricted by limitations of the actual implementation. Some
implementations may offer certain means to address such limitations. For example, in implementations not
supporting multi-tasking capability, chaining of extensions may be handled by suspending the calling
extension and running the called extension. Implementations having no such restriction can run extensions
in parallel as allowed by their implementation.

MeT Ltd

MeT-Wallet -Concept-v1_0-20030922

Page 11(43)

5.3 Clients
MeT Wallet router aids MeT Wallet clients to invoke MeT Wallet extensions.

Clients can be of different kinds. They may be native applications, embedded in the terminal software or they
may be downloaded applications (e.g. Java). Wallet Shell and protocols (protocol clients) can also act as
clients to the wallet directly invoking extensions.

One client may call several extensions, depending on needs. The wallet does not mandate any particular
dynamics for invocation, but client environments and limitation of the implementations may impose certain
restrictions.

The client is an application operating in its environments and enjoys all the rights to use its environment just
as any other applications in the same environment. For example, the client may communicate with the user
or establish its own communication link with the remote server. The wallet does not preclude or restrict any
of those functions.

5.3.1 Wallet Shell
The wallet shell is one of the wallet clients and - similar to other clients - it can identify and invoke
extensions. The most important difference is that the main purpose of the shell is to present the list of
extensions directly to the user.

The wallet architecture does not require the existence of the wallet shell nor does it limit the number of actual
wallet shells. There may be several client applications (e.g. MIDlets) that operate as wallet shells.

Access control is designed in such a manner that every extension may decide whether some of its
registration entries can be visible through the wallet shell. Further, each registration entry may limit its
visibility to some clients only, so that some implementations of the shell may not have access to all
extensions.

It is expected that there will be at least one default shell always available to the user so that the user will be
able to enjoy the convenience of directly invoking extensions.

5.4 Special extensions - secure storage, smart card access
The wallet provides some extensions that are designed primarily to be used by the other MeT Wallet
extensions to improve their functionality. In particular, the wallet provides access to secure storage and
access to smart cards.

The exact method that is used to access these special extensions depends on the environment. The wallet
does not mandate any specific access or implementation, but assumes that each environment will eventually
provide access to special extensions, if they are available.

In some environments those extensions may not be called through the wallet API, but they may rather
expose their own APIs or integrate into other APIs. Therefore they may be perceived more like utility libraries
than extensions. They are however considered as part of the wallet architecture.

Note that as they are extensions, they can be called either by another extension or directly by the client. The
wallet does not preclude either possibility.

5.4.1 Secure storage
Secure storage is the storage within the terminal that holds information in an encrypted form. Access to the
storage is protected, usually with PIN. The storage implements two basic services: store and retrieve. In
order to receive information from the storage in a plain format, the user must supply the valid PIN.

MeT Ltd

MeT-Wallet -Concept-v1_0-20030922

Page 12(43)

Terminal may use several methods to implement the secure storage, depending on expected security level,
available support from the hardware and similar. The wallet defines minimum requirements for the secure
storage.

The secure storage can be made available to clients and extensions by different means. For example, in the
Java MIDP environment, secure storage may be implemented as a separate API or as an extension to the
existing RMS system.

Detailed discussion of the secure storage is provided later in this document.

5.4.2 Smart card access
Smart cards are tamper-resistant devices that can be fitted in the terminal. Each smart card contains a
microprocessor and may host one or more applications. The most popular type of smart cards in the GSM
environment is the SIM card that authenticates the subscriber for billing purposes and stores additional
information (phone book, provisioning etc).

The extension can access smart card in order to execute applications on the card and to manipulate data on
the card through such application. One smart card may possibly have several applications, ranging from the
passive data store to active support for security functions to implementing proactive applications. The wallet
interprets each application on the card as the separate extension.

Cards that do not conform to the conceptual model of the wallet cannot be interpreted as extensions. This
does not preclude the existence of certain library methods to operate on such cards, but such libraries are
not within the scope of the wallet architecture.

5.5 Trusted dialogue
In addition to the wallet shell (that acts as a client), the wallet provides the collection of functions that can be
invoked by extensions for the purpose of trusted dialogue with the user. Th ese methods are available for
extensions to use in addition to methods that can be normally used by them to communicate with the user.
Extensions have no obligation to use methods provided by the wallet.

The trusted dialogue offered by the wallet serves two purposes.

• Provide consistent user experience. Trusted dialogue methods are constructed to follow expected
functions rather than to provide generic input/output capabilities. As such, the user may experience
the similar interaction regardless of the functionality of the actual extension. As the wallet operates
across different environments, extensions may provide similar user experience regardless of their
environments.

• Support trusted interaction. The wallet is able to determine the identity of the extension and it can

communicate such identity to the user in a manner that cannot be imitated by any other software. By
this, the wallet may reassure the user about the genuine origin of the party that initiates the dialogue.

Note that clients can use the trusted dialogue in order to promote the consistency of user experience. The
identification of the caller by the trusted dialogue is supported to the extent the caller can be identified by the
wallet.

MeT Ltd

MeT-Wallet -Concept-v1_0-20030922

Page 13(43)

6. Example
The following example is used to illustrate how different aspects of the wallet functionality can be expressed
in the assumed wallet architecture. The example stresses technical side of the wallet and should not be
interpreted as a use scenario. The narrative is used only to illustrate the possible usage.

An example is constructed around the mobile ticketing application area, where tickets are acquired over the
air through the remote connection and then stored in the mobile device.

6.1 Initial state
The initial state of the wallet is as follows. There are two standard extensions registered with the wallet. The
smart card extension allows for an access to the contact or contactless card. The secure storage provides
place to store sensitive information, encrypted and PIN-protected. The wallet shell is the only client present.

The smart card extension and the secure storage extension can be accessed by other clients, possibly with
certain restrictions. They cannot be accessed from the wallet shell so that the shell is empty.

The smart card extension may hold different applications e.g. applications that implement contactless train
tickets. Initially the smart card does not have any applications of this kind.

 wallet

clients

extensions

smart card

secure storage

6.2 MIDlet Extension Loaded
This example demonstrates how the loaded extension can integrate with the wallet as one of wallet
extensions and then how it may become available to the user.

The MIDlet 'TicketMan' has been developed to operate as the wallet extension. The purpose of this MIDlet is
to allow the user to buy event tickets remotely over wireless Internet. Tickets will be securely stored in the
mobile device. The user should be able to acquire tickets, manage them (view, remove etc) and finally use
them with the help of this MIDlet.

The MIDlet extension is designed in such way that it can accept different start-up parameters that can be
passed to the extension by the caller. Also parameters that are stored in the router's entry will be passed to
the MIDlet when it is being invoked.

MeT Ltd

MeT-Wallet -Concept-v1_0-20030922

Page 14(43)

 wallet

clients

extensions use TicketMan

smart card

MIDlet
'TicketMan'

secure storage

2

1
3

Following is the possible scenario how the MIDlet can be integrated with the wallet. Numbers before
paragraphs refer to the picture above.

1. The MIDlet arrives to the mobile device. The exact method to download the MIDlet is not considered
here, but at certain moment the downloading process discovers that the MIDlet is a wallet extension
that would like to be accessible through the wallet shell under the name 'use TicketMan'. The MIDlet
may provide additional registration parameters.

2. The downloading process registers the MIDlet with the wallet by placing the reference to the newly

loaded MIDlet in the wallet's router, thus creating the new entry. The entry includes the name as well
as access rights that allow the wallet shell to identify and invoke the MIDlet. Other registration
parameters are stored in the entry as well. The MIDlet itself can be located wherever in the mobile
device (e.g. together with other MIDlets), it is the reference that determines that the given MIDlet is
an extension.

3. The wallet shell determines that there is a new extension that would like to be accessible from the

shell. The exact method used by the shell to determine changes in the router is not discussed here.
The shell retrieves information from the router and creates the entry that is visible to the user.

6.3 MIDlet Extension in Action
This example demonstrates how the MIDlet can use wallet features. The user invokes the MIDlet in order to
buy the ticket. Exact methods used to find the ticket and pay for it are not considered here.

The ticket is received by the MIDlet from the remote server and should be securely stored in the mobile
device. For that purpose the MIDlet is supposed to use the secure storage server. The secure storage is
protected by PIN that must be supplied by the user. In order to increase user's convenience, the new ticket
should be accessible for the user directly from the wallet shell.

MeT Ltd

MeT-Wallet -Concept-v1_0-20030922

Page 15(43)

wallet

clients

extensions use TicketMan
abcde

smart card

MIDlet
'TicketMan'

secure storage

enter PIN:

3

2
1

4

Following is the possible scenario how the MIDlet can be used to acquire and store the ticket. Paragraph
numbers refer to the picture above.

1. The user selects an entry from the wallet shell. The shell invokes the MIDlet through the wallet's
router. Note that the MIDlet is invoked with the same set of data that has been passed to the router
during the registration. The MIDlet is therefore aware that it has been called using the entry that has
been associated with the shell entry 'use TicketMan'.

2. The MIDlet acquires the ticket (e.g. the movie ticket) from the remote Internet site and places it into

the secure storage. For that purpose the MIDlet uses the wallet to invoke the secure storage
extension. The MIDlet acts at this moment as wallets' client.

3. The secure storage is encrypted and can be opened with PIN. The secure storage invokes the

trusted dialogue through the router. The user enters PIN that is used by the secure storage to
successfully open the storage and store the ticket. Note that the PIN is not supplied by the MIDlet.

4. The MIDlet registers itself with the wallet again, this time providing the name of the ticket (e.g.

'abcde') and possibly the reference to the storage area where the ticket has been stored. The wallet
creates the new registration entry. The wallet shell puts the name of the movie on the user interface.
If the user wants to operate on this ticket it is enough to select it from the wallet shell. In addition,
this entry can be also accessed by other clients.

6.4 MIDlet as a Client

A separate MIDlet (named 'Planner') has been loaded in the mobile device. This MIDlet has been developed
to take care of time planning. Its main function is to interface with the device's PIM system. In order to fulfil
those functions the MIDlet collects different information from various elements of the mobile device. This
includes access to tickets stored in the mobile device.

The Planner does not understand format of tickets that are processed by TicketMan, but it is able to read
tickets if they are presented in the standard format (e.g. in MeT format). The TicketMan can provide such
information if invoked with certain parameters.

MeT Ltd

MeT-Wallet -Concept-v1_0-20030922

Page 16(43)

 wallet

clients

extensions
use TicketMan
abcde

smart card

MIDlet
'TicketMan'

secure storage

enter PIN:

3

2

1

MIDlet
'Planner'

Following is the possible scenario how the MIDlet client can use the wallet. Paragraph numbers refer to the
picture above. It is assumed that the client MIDlet Planner has been already loaded to the mobile device.

1. Once started, Planner checks with the wallet whether there are any extensions of interest that it can
access. The entry of 'TicketMan' that holds the ticket is spotted and the Planner invokes the entry in
order to retrieve ticket details. Note, that Planner does not have access to the first entry associated
with TicketMan.

2. The TicketMan proceeds with the ticket as shown in the previous example (accesses the secure

storage, the secure storage asks for PIN etc.), as shown by the thin dotted line. The Planner
receives the necessary ticket details in standard format.

3. The Planner accesses the smart card extension to check whether there are some train tickets. If

there are no tickets, the Planner does not receive any information.

MeT Ltd

MeT-Wallet -Concept-v1_0-20030922

Page 17(43)

7. Use cases
The following is a description of some selected use cases. These use-cases demonstrate the expected
impact of the wallet on the market of secure services. They also illustrate the architecture of the wallet and
highlight the most important technical solution used within the wallet.

7.1 Terminal-based tickets
This use case describes the system where the terminal is used to process event tickets. Such tickets can be
stored directly in the terminal, e.g. in the secure storage provided of the wallet as one of its standard secure
services.

The use case also illustrates how the service that is using the wallet can be deployed on non-wallet
terminals, thus demonstrating how to bridge the initial gap of insufficient installed base of wallet-enabled
terminals.

7.1.1 Description
• Service provider wants to establish the new service to sell event tickets. Tickets will be stored in

terminal memory, e.g. in the secure storage provided by the wallet as one of secure services.

• Service provider creates MIDlet that can handle tickets. The MIDlet provides the complete coverage
for tickets from the given service provider, i.e. tickets can be bought, viewed and used with the help
of the same MIDlet. Such MIDlet can be loaded from the Web or it can be distributed by any other
established method.

• The MIDlet is able to detect whether the terminal provides the wallet. If not, the MIDlet can operate

without the wallet, even though the usability may degrade. The minimum requirement for the
terminal is the regular MIDP environment.

• When the MIDlet is loaded to the terminal it requests to be registered to the wallet shell with the

name that suggests to the user to buy new ticket from service provider. The MIDlet therefore
establishes itself as a secure service. If the terminal does not support wallet registration, the request
is ignored and the MIDlet is stored together with other MIDlets or applications, under the name that
identifies the service provider.

• As the MIDlet is registered to the wallet shell, the user can invoke the MIDlet to buy the ticket. The

MIDlet can handle the entire shopping experience. The actual payment method is out of scope of
this use case, but it can also be handled by the MIDlet, possibly using other information from the
secure storage (e.g. credit card information).

• Tickets that are acquired from the service provider are stored by the MIDlet to the secure storage so

that they cannot be used without the proper user authentication. If no secure storage is provided,
tickets can be stored in the regular storage, even though it can provide significantly less protection.
Further, the MIDlet may use the wallet trusted-dialogue to query the user for PIN and establish
certain encryption by itself.

• All tickets that are handled by this MIDlet are also listed on the wallet shell, pointing to the same

MIDlet but providing different start-up parameters for the MIDlet. Whenever the user selects the
ticket from the wallet shell the MIDlet is started to handle the user's request regarding this ticket like
viewing, use, removal, transfer etc. If the terminal does not support the wallet registration, all tickets
can be handled by starting the MIDlet the normal way.

7.1.2 Technology required
This use case requires the Java environment in the terminal. The use case is also applicable for other
programmable environments if they support the wallet.

MeT Ltd

MeT-Wallet -Concept-v1_0-20030922

Page 18(43)

This use case requires the following wallet-related technologies
• shell registration
• secure storage service
• optionally: the trusted dialogue

This use case demonstrates also how the application can be deployed without the wallet functionality
available in the terminal.

7.1.3 Benefits
For the service provider this use case demonstrates the following benefits.

• The use of established technology (Java). Initial investment is minimal as well established tools and
method can be immediately taken into use. This minimises both the cost and the risk of entering the
market.

• Backward compatibility. The use case demonstrates how the same MIDlet can operate on terminal

with wallet functionality and on terminals without them. In the latter case the usability and security
degrades, but the ability to address such terminal allows the MIDlet to reach the very large installed
base of customers.

• Visibility on wallet shell. The ticketing MIDlet can present itself to the user on the wallet shell that is

dedicated for commerce-related items, so that the user can easily find it when needed. This may
improve the eagerness of the user to make use of such application.

• Improved data security. Ticketing information is PIN protected in the secure storage. If the terminal

is lost or stolen, tickets cannot be used by an unauthorized person.

• Flexibility in implementation. The service provider is not tied by any specific protocol or data format.
The ticketing MIDlet can interact with the established infrastructure. It can also interact with the user
in a manner that the service provider finds most appropriate.

• Branding ability. Both the MIDlet itself and the wallet shell can deliver brand to the user. Names,

pictures or other branding elements can be used to provide association of the brand and the service.

For the user this use case demonstrates the following benefits.

• Consistent usage experience. The integration of all the commerce-related items into one menu area
allows for more consistent navigation. Elements of user interaction that are provided by the secure
storage or through the wallet trusted dialogues are consistent.

• Usability. As the ticketing application is reachable from the wallet shell that is specifically designed

for commerce-related items, the user can more easily find the relevant MIDlet. Further, all the tickets
that have been already acquired can be accessed easily from the same wallet shell.

7.1.4 Market impact
This use case is aimed at early stages of the development of the market for the wallet -based solutions. As
such, it concentrates on issues that are characteristic to transition time, namely the co-existence of wallet
and non-wallet devices.

• Immediate appeal. The use case demonstrates how the initial gap of a missing installed base can be
overcome with the help of MIDlets that can optionally take advantage of the wallet functionality while
still delivering certain functionality on non-wallet devices. The market impact of backward
compatibility is enormous as it drives the gradual adoption of the wallet while satisfying the needs of
service providers for a large installed base.

• Gradual adoption. The single MIDlet that acts as a provider of secure services is again characteristic

for the early market where individual providers can deploy their solutions in relative isolation, still
enjoying immediate benefits coming from the usage of the wallet. The wallet does not require any

MeT Ltd

MeT-Wallet -Concept-v1_0-20030922

Page 19(43)

specific market configuration, thus enabling gradual market adoption without any need for specific
business alliances.

• Higher value. The usage of secure storage for tickets helps providers to remove certain fears

regarding the security of data stored in the terminal. The availability of secure storage can therefore
drive the market from low-value goods towards the processing of higher-value items, e.g. tickets.

7.2 Banking identification
This use case shows a bank deploying a handler to provide a secure identification service. This service can
serve not only the bank's own applications (whether Java MIDlets or web pages) but it can also be used by
some of the bank commercial partners, if authorised by the bank.

The banking identification usage case demonstrates how the single player can create the affinity structure
around its wallet services if only the wallet is used as a foundation for such services. This use case
demonstrates the growing sophistication of solutions, enabled by the wallet architecture, that allows for new
revenue possibilities.

7.2.1 Description
• Bank deploys the identification system that bases e.g. on non-standard cryptographic features, e.g.

on the list of one-time passwords. Such identification system is specific to the bank, i.e. it is only the
bank server that can verify the actual identity.

• The system is deployed as the MIDlet handler that uses the wallet secure storage to keep the list of

passwords. Once the list of passwords becomes empty, or at the convenience of the user, the
handler communicates with the bank to receive the new list. This communication requires the user to
provide additional identification (e.g. password) that can be delivered off-line.

• The handler provides at least one secure service: it discloses one password at a time to approved

clients. Other services, if any, are not important for this use case.

• Clients are restricted to be MIDlets signed by certain providers (specifically the bank itself) or web
pages, if accessed over secure connection with approved certificate (again, specifically the banks
own). The handler is delivered with the initial list of client identities that can use the handler. The
handler can be also activated from the wallet shell to start the re-load of the password list.

• The bank may allow its partners to use the one-time password method for their services. Each

partner is then allowed to deploy the MIDlet that can access the handler. Alternatively, each partner
can create the web page that can be accessed through the secure connection. In both cases the
cryptographic identity of the client must match the access control established by the handler.

• Clients coming from bank's partners (e.g. affiliated stock trader, insurers, on-line shops etc), be it

MIDlets or web pages, can use the banking identification server to provide identification for their own
services. They can call the handler, receive one-time password and then use it to authenticate the
client through the banking server.

• The bank may use the communication intended to update the list of passwords to modify the access

control list, thus allowing new partners in or excluding some of existing partners, thus shaping the
market for its identification servers.

• Note that there are several alternatives not discussed here that may allow the bank to gradually

position itself on the market. For example, the strategy of dual-use MIDlets presented in the first use
case is also applicable here. The service of identification can be bundled together with certain
banking services (e.g. balance query) into one handler. Such handler on on-wallet terminal can be
only used to access banking services while the same MIDlet deployed on the wallet-enabled
terminals can be used as the foundation for affinity services as described above.

MeT Ltd

MeT-Wallet -Concept-v1_0-20030922

Page 20(43)

7.2.2 Technology required
This use case requires the Java environment in the terminal. Optionally, the browser environment may be
used as well. The use case is also applicable for other programmable environments if they support the
wallet.

This use case requires the following wallet-related technologies

• router with MIDlet to MIDlet invocation (optionally with browser to MIDlet invocation)
• secure storage service
• wallet shell registration (optional)

7.2.3 Benefits
For the bank this use case demonstrates the following benefits.

• The use of established technology (Java). Initial investment is minimal as well-established tools and
method can be immediately taken into use. The solution can be supported by existing developers
and software products.

• Terminal-based security. The solution does not require any hardware-specific security to be installed

in the terminal or delivered to customers; the complete solution fits the regular terminal (with the
wallet). This is not only cost-effective, but it also addresses the large base of terminals.

• Infrastructure leverage and re-use. An infrastructure that is already in use to support existing

authentication method is likely to be re-used. The traditional authentication method (e.g. one-time
password list on paper) can be still used during the transitional period.

• Market reach limited only by wallet deployment. As no additional hardware devices are needed (not

even a card), every wallet-enabled terminal can be potentially used. Therefore the potential market
is quite large. In addition, the logistics of the deployment is significantly simplified and is cost-
effective.

• Branding opportunity. The handler itself can communicate the brand not only through the wallet shell

but also during every interaction when queried by the client. Not only it increases brand awareness
but also improves information security and transaction trust as the user becomes aware of the bank
involvement in transaction.

• Market creation. The wallet allows for the creation of the market for secure services where the bank

provides the service and then benefits from re-selling the service to other players. The handler can
additionally serve audit purposes if the server-based audit is not sufficient.

For the user this use case demonstrates the following benefits.

• Consistency of identification. Different clients use the same handler to secure the user's
identification. From the user perspective it is always the same, consistently presented interaction
that leads to authentication. The solution allows the user to create the consistent expectation
regarding the identification, making it easier and more understandable.

• Increased trust generated by brand. As the brand of the bank can be displayed for every

identification, the user's trust in transaction itself may increase due to the fact that the bank indirectly
supports the activity of the client. This in turn may increase the willingness for the user to engage in
transactions.

7.2.4 Market impact
This usage case illustrates more mature market of secure services. As such, it concentrates on the ability to
create new markets by allowing several clients to use the same handler.

MeT Ltd

MeT-Wallet -Concept-v1_0-20030922

Page 21(43)

• New business model. The use case demonstrates the new business model where the handler
originally intended to satisfy needs of the individual provider can be re-used by other providers. This
creates new business opportunities for the original provider (the bank) as well as for subsequent
service providers which can access the increasing installed base.

• Synergetic development. Even though the use case requires certain provider (the bank) to make the

first step and issue the handler, it is really the synergetic development of the market that happens.
The bank, through its brand, builds the trust while affiliates build the necessary market momentum.

• User willingness to participate. The mobile commerce has been plagued by low user interest. The

use case demonstrates how the user can be attracted into using the handler by the growing number
of offerings that are coming from the bank and from affiliated companies.

7.3 Smart card stored value payment
The use case shows the operator that deploys the stored value payment system that bases on SIM through
secure services of the wallet. The main purpose of such service is to be used by the variety of applications
(MIDlets) for small payment purposes.

This use case demonstrates how the operator can build new services by leveraging its position in the
terminal (ownership of tamper-resistant SIM) without allowing unrestricted access and endangering the
sensitive content of SIM.

7.3.1 Description

• Operator deploys the stored value micro-payment that is aimed initially at Java gaming. The value is
stored in SIM in a format that is operator proprietary. The operator can adjust the balance in SIM
through any of the established methods (e.g. by sending encrypted SMS).

• It is out of scope of this use case how the value is established, but such value may come e.g. from

the pre-paid user's account or it may be actually credited to the user's account. A similar use case
can be constructed for other means of payment where SIM is used rather as an identifier than as
value holder.

• The operator deploys the handler (presumably the MIDlet) signed by the operator that provides the

‘pay’ service to clients. The handler is registered to the wallet and uses some smart card access
methods (e.g. SATSA/JSR177) to access SIM. The handler is further registered to the wallet shell so
that the user can access the account for management purposes (e.g. balance query).

• Clients of such handler are all MIDlets that may require payment (presumably of small value) during

their operations. For example, a game may require payment before it allows the user into the next
level. Similarly, multimedia manager may require a small fee before allowing the user to play the
specific song.

• Whenever the MIDlet requests a payment, it invokes the respective service from the handler through

the wallet. The handler contacts SIM and deducts the required account. The user is consulted about
the exact value of payment. The user must approve the transaction. The client can be presented
with the proof of payment, e.g. in a form of signed document that can be verified with the operator's
certificate.

• Access to the service is limited to certain MIDlets that are identified e.g. by the certificate of the

signer. The handler arrives with the initial list of approved clients, but such list can be modified by an
operator at any time e.g. by sending the SMS to the handler.

7.3.2 Technology required
This use case requires the Java environment in the terminal. The use case is also applicable for other
programmable environments if they support the wallet.

MeT Ltd

MeT-Wallet -Concept-v1_0-20030922

Page 22(43)

This use case requires the following wallet-related technologies
• router with MIDlet to MIDlet invocation
• access to smart cards
• wallet shell registration (optional)

7.3.3 Benefits

For the operator this use case demonstrates the following benefits.

• Established technology (Java). The operator can deploy the solution to the variety of terminals
(assuming they support the wallet concept), using tools and resources that are already present on
the market.

• The use of SIM for additional services. As SIM is changing into USIM with place for several

applications, operators are facing the challenge to capitalise on this development. The wallet allows
them to exploit additional applications on SIM without surrendering its total ownership.

• Leverage of pre/post paid relationship. The demonstrated payment system can be easily integrated

with operator's pre-paid or post-paid relationship, thus leveraging them. It will result in the increased
revenue per user.

• Market reach limited only by wallet deployment (no extra hardware). As the solution does not require

any additional hardware (the wallet and SIM are the only prerequisites), the potential market size is
quite large, minimizing the risk of investment.

• Branding ability. The operator can establish itself as the preferred payment brand that is visible

during every transaction. The use of Java-based handler means that the brand (as well as the user
interaction) can be presented to the user in a rich form.

• New role and new market potential. Re-selling SIM-based services opens new market possibilities to

the operator as it is assuming a new role. Several business models can be implemented using the
same technology.

For the user this use case demonstrates the following benefits.

• Simple account management. All the small payments can be conveniently tied to the single account.
This allows the user to simplify the payment relationship management. At the same time the
selection of pre-paid or post-paid allows the user to better control accounts, e.g. in case where the
corporate phone is used for private purchases.

• Existing payment relationship. There is no need to go beyond existing payment relationships, but the

scheme utilises the relationship that is already in place and is already tied to SIM. An update of the
terminal does not terminate the relationship, assuming that the new terminal supports the wallet.

• Increased use of digital goods. Convenient payment is one of the elements that increase the use of

digital content. With prices for the content as low as 0.01EUR (one-time streaming), the convenient
low-value payment can become effectively an enabler for certain types of consumption.

7.3.4 Market impact
• Energise mobile commerce. The convenient payment contributes to the overall increase of the

volume of mobile commerce, eliminating additional accounts and decreasing transaction costs.
Further, as the user is in continuous control over the standing of his/her account, the user is more
willing to venture into new forms of media usage (e.g. streaming, rental etc) and into new forms of
payment relationship (e.g. pay as you go).

•

MeT Ltd

MeT-Wallet -Concept-v1_0-20030922

Page 23(43)

• Leveraging existing SIM. Several technical problems stall the usage of SIM for more than the
subscriber identifications, thus decreasing the usage of the popular tamper-resistant platform. The
wallet allows the SIM to securely and selectively export its features to third-party applications without
significant investment from operators (e.g. without updating to USIM). This value proposition is novel
in the market and may create several new opportunities.

• Enabler for third party services. Third parties had problems capitalising on the investment in

attractive content or services as the delivery channel (and specifically the payment channel) has
been monopolised by operators and has been subject to crude business models. The wallet allows
the establishment of more fine-grained relationships that provide more flexibility to third parties in
how and when to charge the user. Effectively, third-party providers face new incentives to deliver
attractive content.

7.4 Receipts management
This use case illustrates a retailer that deploys the digital receipt payment. As the acceptance of digital
receipts grow, the integrated application can take care of receipts that are coming from different, possibly
incompatible sources, to present the user with the integrated receipt handling system.

This use case demonstrates how the standard approach to the client interface allows to create the market for
integrated applications while allowing each individual player to retain exclusive control over their data and
data format.

7.4.1 Description

• Certain on-line store deploys the MIDlet handler that manages digital receipts. Whenever the user
buys goods from the shop, the store activates the handler that receives and stores the receipt. For
example, the handler can be registered as a MIME handler for the data content of type 'receipt', so
that whenever the browser receives the receipt, it is passed to the handler. Such MIME type
registration is currently discussed by JSR211. Even though MIME registration is not directly
applicable to the wallet registration, both methods are compatible so that one MIDlet can serve both
as MIME handler and wallet handler.

• The handler is registered with the wallet and is accessible through the wallet shell. The user can for

example view receipts stored by the handler, remove them or possibly send to other location(s). In
addition, other clients can access the handler if they come from the same store. The handler exports
the receipts to the client in a standardised manner, regardless of the actual format of the receipt
used by the store.

• Some affiliated shops utilise the same concept of MIME type and consequently use the same

handler. Other shops, however, use different formats for digital receipts and different delivery
means. Such shops may deploy their own handlers for receipts that may be registered with the
wallet, talking benefit of being reachable from the wallet shell. All the handlers can be reached also
by designated clients. All handlers may store receipts in a manner that is most convenient for the
issuer of such handler, but they present the standard receipt format when they are called by the
client.

• The original store deploys the MIDlet client that manages receipts e.g. by integrating them into

personal finance management system. This MIDlet acts as a client that initially contacts the handler
that has been originally deployed by the store.

• The store agrees with other shops so that the client from the original store can access other

handlers. Despite the fact that the internal formats of receipts coming from different shops may be
incompatible, the user can access all the receipts through one client MIDlet, thanks to the standard
interface between the client and the handler. The issuer of each receipt retains all the rights
regarding the receipt policy (e.g. cryptographic protection, life span etc.).

MeT Ltd

MeT-Wallet -Concept-v1_0-20030922

Page 24(43)

7.4.2 Technology required
This use case requires the Java environment in the terminal. The use case is also applicable for other
programmable environments if they support the wallet.

This use case requires the following wallet-related technologies

• router with MIDlet to MIDlet invocation
• wallet shell registration

7.4.3 Benefits

For the shop this use case demonstrates the following benefits.

• Established technology (Java). The retailer can use the technology that is popular so that it benefits
from the widespread understanding of the technology among developers as well as from access to
all the tools.

• Control over own receipts. The retailer is able to dictate access rules for its own receipts as well as

the receipt structure that fits its actual infrastructure. Security concerns as well as additional
information needed for the shop can be addressed.

• Possibility for individual deployment, depending on needs. The solution can be deployed by each

shop or each chain individually, without the need for any market-wide synchronisation of activities.
Each shop can choose the deployment route that best sits its individual needs.

• Market reach limited only by wallet deployment branding ability. The solution does not require any

special equipment in the terminal (except for the wallet itself). Hence the potential market is not
limited to the particular model or particular accessory, but is as large as the wallet.

• Extended reach to affiliated partners. Once the solution is deployed, it can be easily utilised by

partners. The owner of the solution can extend the affiliation by controlling access to the handler,
according to business needs.

• Opportunities for new applications. New applications can be built on top of the solution. Not only

receipt manager (presented in the use case) but also promotional coupons, advertisements etc. can
be added to the solution.

For the user this use case demonstrates the following benefits.

• Convenience of digital receipts. The existence of digital receipts removes unnecessary paper from
the user's wallets and allows for smooth integration with a variety of systems, both at home and in
the office (e.g. for business travellers).

• Consistency of experience. The variety of access styles proposed by individual shops can be

replaced by more consistent experience provided by an individual client. As such, the user gains
better control and understanding of the operation of receipts.

7.4.4 Market impact
• Market creation. The use case shows how the market for digital receipts can be built from scattered

solutions that serves one shop only towards the solution that can provide the critical mass sufficient
to drive receipts into market reality.

• Consolidation. Receipt-handing systems are currently proprietary to different shops (or chains) that

does not allow for the receipts market to reach sufficient consolidation that will justify the introduction
of new technology. The wallet concept demonstrates how this can be overcome.

MeT Ltd

MeT-Wallet -Concept-v1_0-20030922

Page 25(43)

• Individual control. Even though the solution allows for consolidation, individual players retain control
over their respective data. This allows them to overcome initial fears of the cooperation. It also
allows them to address needs of their respective infrastructures (e.g. in terms of additional data
fields or required security) without hampering the interoperability.

• Improvements in logistics. The arrival of digital receipts allows for significant savings at the point of

sales, both in terms of material and time needed to print paper receipts. Several sales channels may
be integrated so that e.g. on-line shops that also operate through physical ones can share the same
format of receipts, allowing for more flexible pick-up and returns.

• Business opportunities . Integration of various receipt formats creates new business opportunities in

the form of integration packages. Ability to present the brand as well as some advertisements and
coupons creates new ways to leverage the brand and promote new products.

MeT Ltd

MeT-Wallet -Concept-v1_0-20030922

Page 26(43)

8. Accessing the wallet
The wallet allows access to extensions from several environments. An 'environment' is understood here not
only as the traditional programmatic environment (e.g. Java , Symbian), but also as any other type of access
environment that may exist in the terminal (e.g. wallet shell, remote access through e.g. browser etc.).

The following is a short discussion of how the functionality provided by wallet extensions can be accessed
from some environments.

8.1 Programmatic environments
Programmatic environments include all the environments that allow the application to be deployed into the
terminal. Examples are: Java MIDP environment, Symbian environment or even terminal specific ('native')
programming environment if it can accept new applications.

In programmatic environments wallet extensions are accessible through some form of invoke-response
means, i.e. the client application invokes the extension, typically by issuing a call to the specified function
and the extension responds with return information. Depending on the environment this generic call-
response method may take on different forms, be it API, the use of URL, internal messaging, remote
invocation similar to RMI or Corba or the use of the specific feature of the programming language itself.

The wallet itself does not require any specific access method but it adopts to the method (or methods) that is
most beneficial in the selected environment as long as the method satisfies the requirements of the wallet. It
can be assumed at the current state of understanding, that the majority of programmatic environments will
use some form of API.

It is necessary that MeT considers several environments to understand possible technical limitations that
may prohibit the immediate development of the wallet solution.

8.2 Wallet shell
The ability to directly access wallet extensions from the wallet shell is seen as the important value-added
factor. It is assumed that such access will follow the usage style that is characteristic for the given device
while at the same time providing consistent access to extensions.

Assuming a menu-structured user interface (which is the more popular one), the list of extensions that is
available for direct invocation should be clustered together for easy access. This can be achieved e.g. by
positioning the wallet shell as one of the top-level menu items.

The wallet does not require the wallet shell access to be controlled or implemented by the native code, even
though it may be likely the preferred implementation. This wallet shell may be implemented as an application
(e.g. Java MIDlet) as long as the integration with the device's wallet shell satisfies wallet requirements.
There is no significant difference for the wallet between the access from programmatic environments and
from the wallet shell.

8.3 Remote access
Another method to access the wallet is to use one of protocols that are implemented in the terminal. The
modern mobile terminal hosts several protocol clients, e.g. GPRS, SMS, MMS, HTTP etc and each one can
be integrated with the wallet.

The exact method to access the wallet from the protocol client should be discussed on the per-protocol
basis, as there is usually more than one method to map the wallet extension into the protocol framework. For
example, the implementation of the HTTP protocol may view the wallet as the local URI namespace or it
may view the wallet as a set of plug-in handlers of MIME data types.

MeT Ltd

MeT-Wallet -Concept-v1_0-20030922

Page 27(43)

Wallet extensions may have specific requirements regarding remote access, specifically when it comes to
access control, as the identification of the remote caller may follow different rules than in the case of local
clients.

Most of the protocol clients are currently implemented as native so that the integration with the wallet should
happen through the native implementation. There is however the growing tendency to build protocol clients
as add-in applications, notably visible for example with browsers. In such case there is no significant
difference for the wallet between the access from programmatic environments and through remote access.

MeT Ltd

MeT-Wallet -Concept-v1_0-20030922

Page 28(43)

9. Creating extensions
There are several ways to create wallet extensions, as they depend mostly on the capability of the terminal
to handle different environments. An 'environment' is understood here not only as the traditional
programmatic environment (e.g. Java, Symbian), but also as any other type of execution environment that
may exist in the terminal (e.g. plug-in cards, remote access to server-executable code).

Following is the short discussion of possibilities to extend the wallet by using different environments.

9.1 Programmatic environments
Programmatic environments include all the environments that allow the application to be downloaded and
executed in the terminal. Examples are: Java MIDP environment, Symbian environment or even terminal
specific ('native') programming environment if it can accept new extensions.

If the extension is executed within the programmatic environment, the wallet provides necessary inter-
connections (including such items as data format conversion etc) while the environment is supposed to
provide the necessary registration and invocation interface. This interface will usually take on the form of one
or more APIs, depending on the environment, but other solutions are possible. Specifically, the interface with
the wallet may re-use one or more of existing mechanisms if they fit the purpose.

MeT believes that the most important environments to address are:
- Java environment (MIDP)
- native environment of the terminal
- Symbian environment

9.2 Smart card
The smart card (or multimedia card) offers the opportunity of the execution environment that is local to the
terminal yet physically separated from mobile device environments. In this case the terminal does not
provide place to execute the code, but rather the place to register and identify those extensions together with
the invocation 'stub' that interfaces between the mobile device and smart cards.

MeT observes the development of smart cards that includes regular ISO7816 cards, JavaCards as well as
multimedia cards, including Mc-EX (Mobile commerce extension) ones. MeT Wallet provides an attractive
method to access different smart cards and integrate them into the unifying invocation framework.

9.3 Remote extensions
Some extensions may reside not on the terminal but rather on the remote server, and may be available only
by specific protocols. Those protocols are implemented in the terminal in a form of protocol clients, e.g.
HTTP client, GPRS client, SMS client etc.

In case of remote extensions the wallet provides means to discover and call those extensions as if they were
local. The actual access is provided by allowing certain protocol clients to register with the wallet so that the
wallet is able to properly route the invocation. The actual registration method is specific to the particular
client, but it may be expected that the concept of URI can be used extensively.

Note that it is irrelevant for the wallet what is the exact implementation of the extension or what protocol is
exactly used. The wallet does not impose or require any standard with this respect, but rather leaves it to
each protocol.

Special care should be taken when it comes to the proper identification of extensions, imperfections in
connectivity, increased response time and other problems that may arise from extensions not being local.

MeT Ltd

MeT-Wallet -Concept-v1_0-20030922

Page 29(43)

MeT believes that even though this alternative looks attractive, it requires further studies and will not be the
driving force for the wallet concept. Certainly some application areas (e.g. ones that require end to end
security to directly communicate with smart cards) may benefit from such configuration.

9.4 Provisioning
The provisioning process is responsible for delivering extensions into its place in the MeT Wallet and making
them available for clients to invoke.

There are several methods to provision the wallet, as each environment (and possibly each vendor or
terminal model) may employ a different one. Some methods are standardised while other may be proprietary
or vendor-specific. Further, the provisioning may happen at factory/delivery (so that the wallet is already
fitted with certain extensions), over the air (where the terminal receives new extensions later into its lifetime)
or on fixed media (e.g. multimedia cards).

If the extension is not physically located at one of terminal environments (e.g. it is on the smart card or on
the remote server), the provisioning may include mechanisms for the wallet to properly discover and identify
such extension so that it can be integrated into the wallet.

 The wallet does not mandate certain provisioning method for its extensions but it is leaving it entirely to the
specific environments. The wallet assumes however that whatever provisioning method is employed, it will
be integrated with the wallet so that extensions can be properly recognised, located and registered with the
wallet.

MeT believes that the provisioning is an important issue that may be approached for each environment
separately.

MeT Ltd

MeT-Wallet -Concept-v1_0-20030922

Page 30(43)

10. Security and Identification
The architectural separation of clients and extensions makes it essential to provide proper access control. It
is specifically important as extensions may handle sensitive data and, despite all the protection, may be
abused. For example, if the extension delivers the service of digital signature, such service may be used by
the hostile client to obtain approval against the will of the user.

The wallet is designed with the security protection against threats caused by hostile clients. It is further
assumed that each extensions will implement its own proper security policy to protect itself against other
threats. The wallet does not address threats associated with physical attacks, attacks with user consent or
attacks on the terminal platform.

The wallet builds on the security that can be achieved in modern terminals and provides the foundation for
terminals with increased security features. The security of the wallet is built on several concepts that are
discussed below.

10.1 Trusted Role of the Router
The security model used by the wallet assumes the central and trusted role of the router, as it is the router
that collects and implements security policies. This require all parties (clients, extensions, smart cards etc) to
trust the router. Even though such requirement may seem to be too high, it is worth noting that already all
applications and all smart cards trust the platform to correctly implement the core software.

For example, Java MIDlet trusts the terminal not only to correctly implement the JVM/KVM, but also to
properly set-up MIDP2.0 trust domains and manage permissions. The smart card trusts the terminal to
properly convey APDU commands between the given application and the card and to securely collect and
deliver PIN from the user.

The trusted role of the router indirectly implies that the router should be implemented in the native code of
the terminal rather than being the add-in.

10.2 Security and Environments
As the wallet spans several environments of possibly incompatible security models, the wallet itself does not
use the single, mandated method to enforce the security or to authenticate clients and extensions. The
wallet relies on each environment’s security architecture and re-uses its identification mechanisms. For
example, for MIDP2.0 environment, each MIDlet can be identified by the trusted security domain it belongs
to. For MIDlets from the same domain, if necessary, identification may use for instance the MIDlet’ full name.

The wallet defines the minimum set of functions that must be provided by each environment, specifically the
ability of the environment to identify the client or the extension. The wallet allows also non-identified parties
to use the wallet, even though their ability to provide and use secure services may be significantly limited.

If the client or the extension is implemented as the remote connection, the wallet assumes that the
respective protocol client (stack) is responsible for the security of the connection, including the identification
of the remote party. Such information can be used to identify the remote party for the wallet.

10.3 Access control
The wallet provides extensive access control features. Each extension may publish its access control
preferences, stating what clients may identify it and use its services. The method by which the given
extension provides the wallet with its preferences depends on the environment. For example Java MIDlet
may use the manifest file to deliver initial set of preferences and then use certain API to modify them
dynamically. The smart card may provide its preferences in the dedicated fi le.

Such access control preferences are used by the wallet to screen clients so that only allowed clients may
use extensions. Further, extensions may use more dynamic access control scheme where an extension is

MeT Ltd

MeT-Wallet -Concept-v1_0-20030922

Page 31(43)

queried each time with the identity of the client so that an extension may respond individually for each
situation.

10.4 Mutual Identification
Both parties (clients and extensions) are allowed to know the identity of the other party (including an
environment it operates in) before proceeding. The wallet provides such information at identification time
before the first interaction.

During the identification the client may enquire about the exact identity of the extension discovered or it may
restrict the search to extensions of known identities. For example, MIDlet client signed by X may ask only for
extensions also signed by X.

If the extension is using the dynamic access control, it will be provided with the identity of the client during
identification. Alternatively the extension will receive the identity of the client with or before the first
invocation. At this time the extension may still reject the client.

The exact implementation of mutual identification may depend on the actual environment. In some
environments not all identification methods may be available, but the wallet requires that regardless of the
environment both parties must have an opportunity to require or learn the identity of the other party before
proceeding.

10.5 Several security technologies
Understanding the continuous development of mobile terminals, the wallet does not prescribe a fixed or even
a minimum required set of security technologies. The wallet allows several technologies to co-exist while
minimising the possible negative impact of low-grade technologies on the overall security of the system by
providing means for each party to express its security needs and to assess the counter-party.

The wallet by itself does not assess security of different parties. The wallet collects information of used
security technologies from all the environments in an environment-specific way. This information is then
made available to the other party. For example, the client may not only learn that the given extension is
signed by the particular provider but also that such extension is implemented as MIDlet within the MIDP2.0
environment.

MeT Ltd

MeT-Wallet -Concept-v1_0-20030922

Page 32(43)

11. User interaction
There are several aspects of the user interaction that are relevant to the wallet. The following is a short
discussion of those aspects.

11.1 Wallet shell
The wallet shell is the component that is visible on the user interface and acts as a client for the wallet,
visualising some of the registered extensions. Usually this shell is integrated with the main user interface of
the terminal.

The shell can be implemented as a native code or it can be provided as a separate client application, e.g. as
Java MIDlet. The wallet shell must be specifically identified to the wallet as a shell, otherwise it will be
interpreted as the regular client.

The wallet does not preclude several shells to co-exist. The relationship between different shells is subject to
further definition. For example, each shell may define the sub-category of extensions it registers while
extensions may provide additional information at registration that may allow the wallet to identify the proper
shell to register them with. Alternatively, shells can be specialised to serve the particular customer groups:
children, handicapped etc.

Regardless of the opportunity for several shells it is desirable to establish one shell as default one so that an
extension is always having certain place to register with. Such default shell may be also used at times where
new shells are added or removed. The wallet defines minimum requirements for the default shell.
Specifically, the default shell should provide access to all the extension management functions, also for
extensions that are not registered with any wallet shell.

Following is an example of the wallet shell that contains multiple registered extensions, implemented in
different environments. Some extensions have registered several times with different initial data. The wallet
and the shell make use of additional graphical elements to improve the usability of the user interaction.

Wallet

Options Back

MIDlet in
Java environment

coupon connected
to shop URL

Ticketing in
Symbian environment

ECML wallet in
native environment

HKL tickets

Matrix III
Finnair Plus

Prepaid ticket
Periodic ticket

Visa

InterCity

buy ticket

Promoshop coup..

11.2 Trusted dialogue
There are several cases where an extension should enquire the user about sensitive information like PIN,
pass code and the like. Such interaction requires usually the trusted dialogue, i.e. the set of user interface
functions that conforms to certain minimum rules that guarantee that no hostile application is able to copy or
intercept the given interaction.

In general, interaction with the user is handled directly by extensions as they are in the position to know
exactly when and what data is needed from the user. The trusted dialogue is offered by the wallet in order to
augment the existing interaction methods, that are specific to different environments. The use of trusted
dialogues promotes the consistency and increases user's trust in applications.

MeT Ltd

MeT-Wallet -Concept-v1_0-20030922

Page 33(43)

The trusted dialogue is accessible through the wallet's router. As the router, the core of the wallet, is likely
implemented as native code, such a solution provides a high level of trust. If extensions have their specific
needs to discuss sensitive information with the user, they can communicate with the trusted dialogue
through the router.

The format of the user dialogue allows the user to determine whether the dialogue is generated by the router
itself, by the native implementation of an extension or by an extension implemented in one of the
programmatic environments. In the latter case the user is able to query the interface to determine the origin
of the extension which may allow the user to assess the trustworthiness of the dialogue.

Further, the wallet guarantees that no application in the terminal can generate the interaction that is identical
with the one created by the trusted dialogue. Therefore the user can be sure about the origin of the
interaction. Several different methods can be used to guarantee the ability to distinguish the trusted
dialogue.

The wallet also makes sure that implementations of methods used to interact with the user meets all the
usual security requirements regarding e.g. keypad feedback, PIN entry, protection against
interception/alteration, removal of unused user input, use of predictive input etc. to the extent supported by
the environment of the extension.

The trusted dialogue is available to extensions by mechanisms that are specific to the environment. The
wallet does not mandate how the trusted dialogue must be invoked, but it requires that the originator of the
dialogue through such interface must be identified and known to the wallet.

The trusted dialogue can be also called directly by clients. In this case the user will be informed about the
origin and identity of the caller if it is known to the wallet (i.e. if it can be reliably extracted from the
extension's environment). Note that the wallet may generally consider clients less trustworthy than
extensions.

Following picture demonstrates and example of the trusted dialogue used to ask the user for PIN. The
dialogue provides certain elements of the design (the key) that cannot be replicated by any other application.
On the left side there is a dialogue generated by the third party extension. The dialogue is having the
optional graphical branding element provided by the extension. The 'Options' menu item may lead to the
complete disclosure of the identity of the extension that has produced this dialogue, as shown below.

On the right side there is a trusted dialogue generated by the native extension (e.g. the standard extension
of the secure storage). The branding element is replaced by the wallet graphics and the key is doubled to
indicate increased confidence of the wallet in this extension as compared to the downloadable one. Note
also that for native originators the 'Options' menu item is replaced with 'OK" as there is no identity to
disclose.

The key symbols represent elements on the screen that are associated with trusted dialogue and cannot be
replicated by any other application – they are generated by the wallet (the router). Instead of having some
area of the screen reserved for such purpose, the wallet may resort to certain colours, symbols or locations
in order to distinguish the trusted dialogue from other dialogues. Alternatively, the user may be able to
inquire about the identity through the unique combination of keys. All of those solutions satisfy the
requirement for the trusted user dialogue.

MeT Ltd

MeT-Wallet -Concept-v1_0-20030922

Page 34(43)

Options Cancel

Please enter PIN

periodic ticket’
to update ‘MetroLink

MetroLink

OK

Identity

...

OK Cancel

Please enter PIN

storage
to open the secure

trusted area -
inaccessible for
applications

area accessible for
regular applications

MeT Ltd

MeT-Wallet -Concept-v1_0-20030922

Page 35(43)

12. Role of smart card
Smart cards are important to the wallet concept. However, due to the complexity of the smart card itself,
there are several roles the smart card can play in the wallet at the same time.

The smart card is usually understood as the card that is compatible with the ISO7816 suite of standards.
Such card usually contains its own microprocessor and memory housed in the plastic enclosure. Such card
may be inserted and then removed from the mobile terminal. For mobile terminals the SIM card is probably
the best known smart card.

Recent development of smart cards has increased the popularity of JavaCard, the smart card that is able to
interpret Java code, becoming the open platform by itself. Further, the success of multimedia has brought
plethora of large-memory cards, coming in different formats: MMC, SD, Memory Stick and the like. Such
cards can be also fitted with their own microprocessor and essentially provide the functionality equivalent to
traditional smart cards.

For the MeT Wallet, both types of cards: smart cards and multimedia cards can be treated in a similar
manner. Even though some types of cards may be more suited for particular task, this chapter will deal with
both smart cards and multimedia cards under the collective name 'smart cards'.

The wallet sees the smart card as yet another extension that can be accessed through the wallet itself. Such
extension is available for both clients and other extensions.

12.1 Smart card as an extension
Smart card may expose its services directly to the wallet so that applications that reside on the smart card
can be seen as wallet extensions. This may require the wallet to provide a kind of 'stub' to interrogate the
card about available applications and to provide required translation between client call to the wallet and
card communication. Further, the wallet may facilitate the access to card from both clients and extensions
through the same wallet interface.

wallet

smart
card

wallet 'stub'

client
(or UI)

wallet-specific
access control

extension

The card application can be called by clients as if it is a regular extension of the wallet. If the card application
allows, it can be called directly from the wallet shell, providing the instant integration of smart card and
terminal with no additional software element involved. An extension may call the smart card through the
wallet as the client does.

This role may be interesting for smart cards that provide standardised applications, as they benefit from very
simple integration with other applications in the terminal. Automatic service discovery may be available and
the user may be informed about the new functionality immediately once the card is inserted.

MeT Ltd

MeT-Wallet -Concept-v1_0-20030922

Page 36(43)

12.2 Smart card and secure storage
There may be several different relationships between smart cards and secure storage. Different possibilities
are depicted below.

 wallet

extension

secure
storage

smart
card

smart
card

smart
card

1

2

3

The concept of secure storage does not preclude the usage of smart cards to augment the storage nor does
it make it mandatory. The smart card support for secure storage functionality is optional and the usage of it is
within the discretion of the extension (the implementation of the secure storage). The caller that is using the
secure storage should have sufficient means to decide whether the secure storage it wants to use must or
should utilise the smart card support, if available.

There are three basic scenarios of the smart card to support secure storage. First, the smart card can be
used as the secure storage itself (or as a part of it). Such storage may provide the ultimate in security, as the
smart card is likely to be more tamper-resistant than the terminal. In addition such element of the secure
storage is removable, adding the feature of portability.

Second, the smart card can augment the secure storage by providing the needed cryptographic protection.
In this scenario the actual data remains in the terminal, encrypted, while the smart card holds necessary
cryptographic keys and provides encryption/decryption mechanisms. The secure storage can work properly
only when the smart card is present even though data itself is not portable.

Finally, the smart card can be used as a secure container to transfer data from one secure storage to
another. Data can be stored into the smart card (and possibly removed from the secure storage) in one
secure storage and then unpacked into another one.

12.3 Role of SIM
SIM (recently USIM or UICC when referred to the card platform) is the most popular smart card in mobile
communication. From the wallet concept perspective SIM is an important smart card as it is present in all
GSM terminals.

The wallet does not assign any special role to SIM, but it may help leverage the multi-application nature of
USIM/UICC either by adding extensions that allow clients securely access SIM functionality or by directly
integrating selected SIM applications with the wallet for immediate visibility to clients and end user.

MeT Ltd

MeT-Wallet -Concept-v1_0-20030922

Page 37(43)

13. Secure storage
Secure storage is an extension that implements the collection of storage technologies with improved security
over the regular storage provided by the terminal. The extension (or the client) may use such storage to
securely keep sensitive information without resorting to solutions that, for instance, utilise the smart card.

The wallet does not mandate or restrict the actual selection of technologies provided that the caller is aware
of the actual technology used to secure the storage. In order to promote portability the wallet may
recommend certain technologies and defines minimum requirements for such technologies.

It is expected that a popular solution for the secure storage will be the regular terminal storage in encrypted
form. PIN provided by the user can be used to encrypt/decrypt data (acting as the main or the only source of
randomness). Certain elements of hardware support can be added to this scheme to further increase
security. Multimedia cards can be used as another implementation of secure storage.

Most of technologies will likely use PIN to protect access to secure storage. The wallet will support PIN-
based protection, but it leaves details of the actual PIN policy (length, change, blocking/unblocking) at the
discretion of the given storage. The wallet defines elements of the user interaction (trusted dialogue) that
increases the consistency of PIN usage.

The secure storage can be made available to extensions through different means. For example, in the Java
MIDP environment secure storage may be implemented as a separate API or as an extension to the existing
RMS system. The wallet defines how the secure storage can be accessed within the given environment. At
the end of this chapter there is a short discussion of the possibility to re-use the wallet router to access
secure storage.

Access to the secure storage is usually controlled by the way the storage is implemented in the given
environment. The wallet defines minimum requirements for access control so that data stored by one
extension cannot be accessed by another one without proper authorisation.

In several environments clients may also be able to take advantage of the secure storage directly, without
resorting to extensions. The wallet concept does not preclude such solutions, but it recommends to use the
complete architecture of clients and extensions to fully insulate secure storage from possibly hostile
applications.

MeT Ltd

MeT-Wallet -Concept-v1_0-20030922

Page 38(43)

14. Deployment
The concept of the wallet is touching several aspects that are relatively complex to standardise and
implement. It also overlaps with several other issues. Therefore it is unlikely to achieve the complete wallet
solution in one step. It is therefore proposed to develop the wallet incrementally, through generations. The
following is the proposal for the first generation of the wallet.

The first generation of the wallet should be built for environments that are expected to be most popular. It
should also utilise existing development to the extent possible. Therefore the following assumptions
regarding the first generation are in place.

• Router. The router should be implemented in the native code. The router may consist of several
independent components (not one monolithic application) that provide wallet-specific functionality.

• Trusted dialogue. The trusted dialogue should be addressed mostly by clarifying the implementation

of current dialogue methods and built in native code.

• Configurations. The ability for the MIDlet client calling the MIDlet extensions depends on the
development on Java platform in the mobile device and is seen as an important mid-term goal. Due
to current limitation of the mobile device, the most promising configurations for the first generation
are:

• Wallet shell calling MIDlet extensions
• MIDlet clients calling native extensions

• Native extensions. It is seen that two types of native extensions are most important:

• Access to smart cards
• Secure storage

• Wallet shell. It is assumed that the wallet shell for the first generation will be implemented as the

native code. The ability to replace shells is important as the mid-term goal.

• Access control. The first generation may provide only certain access control, depending on existing
capabilities. For example, the mutual identification may be not available for some configurations of
clients and extensions. The complete access control is the important long-term goal.

 wallet

router

clients

extensions
wallet shell

MIDlet smart cards

MIDlet

secure storage

trusted
dialogue

JSR177

JSR211

MeT Ltd

MeT-Wallet -Concept-v1_0-20030922

Page 39(43)

On the picture above white arrows indicate interfaces that are necessary for such minimum configuration.
Red (dashed lines) arrows indicate interfaces that exist or are likely to exist. Each red arrow is labelled with
the name of the standardisation group (within Java JCP process) that is relevant to the given interface. Blue
(solid lines) arrows indicate interfaces that do not exist. Elements with bold blue (solid) edges require further
definitions.

Both components and interfaces are described below. For each item the current status and expected work is
determined.

14.1 Router
The router is the core of the wallet offering, providing registration, interface and identification. It should not
be assumed that the router must refer to the single module of the native code. Contrary, the router can be
implemented in several fragments, depending on current needs.

As the first generation of the wallet concentrates on the MIDP environment, the router may consists of
mechanisms that may come from several separate standards within JCP. Some of the interfaces to the
wallet may be embedded into the MIDP specification; some may leverage works of other JSRs while yet
another may require additional standardisation efforts. It is essential, however, that all those solutions will be
coherent with the vision of the router.

The first generation of the router will therefore provide the following set of features, regardless of the number
and type of actual interfaces.

• Registration. The ability for the MIDlet -based extension to register with the wallet is essential for the
wallet to operate. At least static registration should be available, i.e. the MIDlet should be able to
register at the time it has been loaded. Dynamic registration is desirable. Note that native extensions
naturally may have the convenient access to the registration feature through their implementations.

• Identification. The identification may be limited in the first version, i.e. the caller should know in

advance the identifier (e.g. the name) of the extension. Such simplified identification can satisfy
several use cases.

• Invocation. At least the invocation from the wallet shell should be supported. The ability to call

extensions from MIDlets may be initially restricted to some extensions only (e.g. secure storage and
smart cards), depending on the ability of the MIDlet to call another MIDlet.

• Access control. Certain form of access control should be available. In case of MIDlets calling native

extensions (smart card access and access to secure storage), access control similar to the
proposed one should be present. Mutual identification may not be fully available, but at least an
extension may publish its restrictions regarding access. Such restrictions should be observed by the
wallet.

The router should be implemented as native code, to provide the highest possible level of security and trust.

14.2 Trusted dialogue
The trusted dialogue provides the ability for extensions to communicate with the user in a secure and
trustworthy manner. Several aspects related to such communication have already been presented, whether
it is the reassurance that the dialogue cannot be intercepted by other applications or whether the user is
properly informed about the origin of the dialogue.

There are some issues that should be clarified.

• Means of achieving the trustworthiness. The concept of trusted dialogue requires the dedication of
either the designated screen area or some key combination to make sure no application can
replicate the dialogue. As both the screen real estate and key combinations are scarce, such
requirements may not be easy to satisfy.

MeT Ltd

MeT-Wallet -Concept-v1_0-20030922

Page 40(43)

• Preventing interception. There is an existing body of requirements regarding e.g. secure PIN entry,
but innovations characteristic to the mobile device may not be entirely taken into consideration. New
interaction modes like predictive input, re-use of numerical keys to enter alphanumeric characters
may contribute to the complexity of the problem. Further, mobile devices may contain more than one
execution environment with possible interdependencies regarding keyboard input and screen output.
Finally, alternative input methods (e.g. voice, joystick) should be considered.

• The consistency of the user experience. It is widely accepted that the user should face a similar

dialogue when handling a similar task. Such consistency can be achieved within the single device
across all the environments, but it can be also achieved within the same environment across
different devices.

14.3 Trusted dialogue for MIDlets
MIDlets currently are having a wide selection of methods to interact with the user, including several text-only
dialogues as well as colour graphics, animation and similar. Specifically, there is a selection of input modes
to address sensitive inputs like passwords or PINs.

The current MIDP2.0 specification allows for several different implementations. Some of valid
implementations may not be secure enough or trustworthy enough for the wallet. On the other hand, the
existing set of methods is already widely known by the developer's community.

It is therefore recommended for MeT to evaluate the most appropriate implementation within the existing
MIDP2.0 specification and adopt such implementation for the wallet. This is the task similar to one that has
been undertaken earlier regarding the consistency of the user experience.

14.4 Wallet Shell
The wallet shell is responsible for presenting to the user extensions that has registered with the wallet and
allowed for user activation.

The architecture of the wallet shell is under discussion. Specifically, the following items are under
consideration.

• Initial shell. The initial shell is the wallet shell that is active immediately upon the initial power-up of
the new device - the built-in feature of the device. The existence of the shell is not strictly required to
make the wallet operational, yet it is of significant benefit. The user is actually aware of the existence
of the wallet only if there is a certain element of the device user interface that can be clearly
associated with the wallet. Further, some extensions may immediately expect the shell to exist so
that they can register to the shell and be invoked by the user.

It should be considered whether the device should be shipped with an initial shell (the shell provided
by the manufacturer), whether such shell can be loaded at first power-up (possibly provided by the
distributor) or whether the shell may be loaded later at the user's convenience (so that it can be
delivered by third parties).

It is suggested that the device will be shipped with the initial shell, provided by the manufacturer.
Such solution allows all the extensions to assume the known initial configuration of the wallet
regardless of the user's choice. Further, such shell may offer an access to wallet management
functions, thus creating the single access point for the user to all the wallet features.

• Updating the shell. Once the shell is present in the device it may be possible to update the shell e.g.

to offer the lifestyle choice or additional features. The ability to update the shell provides the user
with the value of personalisation, while at the same time offering different players the ability to
deliver specialised (e.g. branded) shells.

As the shell gets updated some issues regarding the relationship between old and new shells should
be considered. First, it should be decided whether the new shell replaces the old one or whether two
or more shells may co-exist together. If there is more than one shell present at the same time, the

MeT Ltd

MeT-Wallet -Concept-v1_0-20030922

Page 41(43)

relationship between them should be clarified - whether there is only one active shell at any time and
whether the user can select another shell as active. Finally, it should be decided whether there is the
default shell, the non-removable shell that resides (semi) permanently in the terminal.

It is recommended that the device will allow for the default shell (that is the initial one) always
present at the device. In addition, the device may allow for more shells to be present at the device
but only one of those should be active (i.e. handling the interaction with the user). This architecture
solution allows for the flexibility (as shells can be changed) while protecting the user interaction (as
the default shell is always present, even though it is not always active). Mandating only one shell to
handle all the interaction greatly simplifies the design and provides the user with the consistent
experience with the shell. Specialised (branded) shells can be still provided by dedicated clients.

• Shell and clients. The shell is one of clients that can use the wallet, yet it requires special handling

by the wallet. Differences between the shell and the regular client should be clarified. The most
important difference is in the dynamics of the registration process, as the shell should be able to
accommodate all the changes to the registration as they happen while the regular client can only
identify the current set of extensions. Further, the extension should be able to determine its visibility
to the wallet shell regardless of the identity of the shell.

It is recommended that the wallet shell should preserve its special status so that not every client can
act as a shell.

The following architectural solution provides the summary of proposals from the discussion above. Further
discussion is necessary to reach the common understanding.

The default shell, preferably implemented in the native code will be present at start-up as the initial shell. The
default shell will not be removable but the user may install another shell that will replace the default one. If
the user-installed shell is removed, the default one becomes an active shell again. If the user installs another
shell and makes it active, the previous one becomes inactive so that at any time there is only one shell that
is active.

14.5 MIDlet shell registration
The ability to call the MIDlet extension from the shell is one of the main configurations for the first generation
of the wallet. This includes the MIDlet ability to register with the wallet and then the ability of the shell to
invoke the MIDlet.

Currently MIDlets are usually started from some form of the shell that is available through the regular user
interface of the device (e.g. through the menu). MIDlets that are loaded to the device are therefore registered
by default with certain shell. This solution may not be sufficient for the wallet. The following issues should be
addressed.

• Position of the wallet shell. The wallet shell should be well presented to the user on the device's Its
position, visibility and accessibility should be at least as good as for the shell that is currently used to
launch MIDlets. Further, the relationship between the MIDlet shell and the wallet shell should be
clarified.

• Static registration. It is seen that the static registration (register at load time) is essential for the first

generation while the dynamic registration (change registrations while running) is the mid-term goal.

• Additional information. In order to facilitate the usability of the wallet shell it is advisable to provide
certain graphical elements that can identify the extension, in addition to usual textual names.

• Structured registration. It may be of value to allow for structured registration, i.e. to create sub-menu

structure of the shell so that the extension may not only register to the wallet, but also register to the
particular slot within the wallet.

The static registration may utilise information that is embedded together with the MIDlet code in the jar file,
as one or more of MIDlet attributes. Existing attributes (like MIDlet-Name or MIDlet-Icon) can be re-used

MeT Ltd

MeT-Wallet -Concept-v1_0-20030922

Page 42(43)

immediately for the purpose of the wallet shell while other features of the shell (registration itself, structured
registration) may require standardisation of additional attributes.

Currently there is no identified activity that may lead to the development of the MIDlet mechanism that may
allow the registration of MIDlet to the wallet shell, whether statically or dynamically. There is certain longer-
term potential in the JSR211activity, for shells that are implemented as MIDlets. MeT will work with JSR-211
Expert Group to initiate the activity.

14.6 MIDlet accessing other MIDlets
Limitations of the majority of MIDP implementations, specifically in terms of device's resources, currently
prevent MIDlets from running at the same time, thus rendering MIDlet to MIDlet communication very hard to
achieve. At the same time, however, this communication is beneficial for several possible application areas.
For example, the browser-plug-in (MIME content handler) can be implemented by MIDlet that can then be
called from the browser implemented as another MIDlet. Further, in the absence of arbitrary class loading,
this mechanism may be beneficial for the deployment of component-based applications.

The ability to call MIDlet extensions from MIDlet clients is the important mid-term goal. Currently there is an
activity within JCP, JSR211 that may eventually lead to the creation of the respective access.

14.7 MIDlet access to Smart Cards
Smart cards (in several formats) are playing an important role in security and are ideally sited to augment the
wallet solution. It is seen as important to allow MIDlets to access smart cards that are present in the mobile
device.

The existing initiative within JCP, JSR177, provides the complete solution for smart card access (in addition
to its other components). Specifically, communication methods for ISO7816 cards and JavaCards are
provided together with access control. MeT will explore whether the solution provided by JSR177 is sufficient
for other types of cards (MMC, SD etc).

14.8 Secure Storage
The secure storage can be implemented in software alone (or in software with hardware support) and it can
be used to store confidential information. Known solutions use the PIN (or password) as the main source of
randomness as they encrypt confidential information with the key that is derived from such PIN/password.
Even though the software-only secure storage cannot provide tamper-resistance comparable with smart
cards, it is an attractive option for solutions where security requirements are moderate or where cheap
solutions are sought.

The concept of the secure storage is quite flexible so that it brings several issues that should be discussed.

• Algorithms. Even though cryptographic algorithms have become pretty standard, there are a lot of
variants and variations that may impact the quality of the implementation. Also the way algorithms
are combined into the complete solution may have a significant impact on the security as well as on
the usability.

• Role of the hardware. The security of the storage can be greatly increased by using some hardware

elements, whether it is the dedicated hardware storage, key storage or crypto-processor.

• Device dependence. The secure storage may benefit from device dependence (e.g. it may use the
unique device identity to augment the PIN), but at the same time it may hamper its ability to transfer
data between devices in encrypted format.

• PIN/password rules. As the storage builds most of its security on the PIN or password, strict rules

should govern the selection of PIN. Specifically, the PIN policy: minimum PIN length, character
base, PIN blocking, multiplicity of PINs etc are up for discussion together with PIN implementation
issues: PIN storage, PIN verification etc.

MeT Ltd

MeT-Wallet -Concept-v1_0-20030922

Page 43(43)

• Communicating security level. Different devices may possibly provide implementations of the secure
storage that may significantly differ in security. The developer should be able to decide whether the
security level offered by a particular implementation is sufficient (assuming the trustworthiness of the
implementation itself). This can be done e.g. by requesting the minimum security level or by allowing
the client to identify the security level that is actually offered..

Certain simple versions of secure storage are commercially available on mobile devices, either as built-in or
as add-on. Some of the standards also address software-only storage for confidential information. MeT will
explore methods used in order to develop the recommendation for secure storage.

14.9 MIDlet access to Secure Storage
The MIDlet specification already defines the storage that is accessible for MIDlets, the RMS (Record
Management System). Such persistent storage uses the device memory to hold data that is (in the simplest
model) private to the MIDlet that created it.

The implementation of secure storage can be done either through a special API or by differently leveraging
the existing RMS solution. All options are worth considering.

• Special API. The special API may define the storage that is independent from the RMS, thus freed
from all the legacy issues. This allows to address properly all the issues related to the secure
storage provided by the wallet, including mutual identification, resolvability etc.

• RMS integration. The concept of extending RMS builds on the understanding of RMS by the

developer community. By adding certain security options to RMS it may be possible to achieve the
same quality of the solution without fragmenting the area of storage solutions, but at the expense of
waiting for another release of MIDP.

• MeT-specific RMS implementation. As the RMS specification does not define any security

measures, it is possible to define the secure specification of RMS within MeT. By reserving certain
part of storage namespace and certain properties the API may remain unchanged.

Currently there is no identified activity that may lead to the development of the MIDlet access to secure
storage. It is therefore suggested that MeT will take action to initiate such activity.

