
Web Services Security (WS-Security)
Version 1.0

April 5, 2002

Authors

Bob Atkinson, Microsoft
Giovanni Della-Libera, Microsoft
Satoshi Hada, IBM
Maryann Hondo, IBM
Phillip Hallam-Baker, VeriSign
Chris Kaler (Editor), Microsoft
Johannes Klein, Microsoft
Brian LaMacchia, Microsoft
Paul Leach, Microsoft
John Manferdelli, Microsoft
Hiroshi Maruyama, IBM
Anthony Nadalin, IBM
Nataraj Nagaratnam, IBM
Hemma Prafullchandra, VeriSign
John Shewchuk, Microsoft
Dan Simon, Microsoft

Copyright Notice
© 2001-2002 International Business Machines Corporation, Microsoft Corporation,
VeriSign, Inc. All rights reserved.

The presentation, distribution or other dissemination of the information contained in
this specification is not a license, either expressly or impliedly, to any intellectual
property owned or controlled by IBM or Microsoft or VeriSign and\or any other third
party. IBM, Microsoft, VeriSign and\or any other third party may have patents,
patent applications, trademarks, copyrights, or other intellectual property rights
covering subject matter in this document. The furnishing of this document does not
give you any license to IBM's or Microsoft’s or VeriSign's or any other third party’s
patents, trademarks, copyrights, or other intellectual property. The example
companies, organizations, products, domain names, e-mail addresses, logos, people,
places, and events depicted herein are fictitious. No association with any real
company, organization, product, domain name, email address, logo, person, places,
or events is intended or should be inferred.

This specification and the information contained herein is provided on an "AS IS"
basis and to the maximum extent permitted by applicable law, IBM and Microsoft
and VeriSign provides the document AS IS AND WITH ALL FAULTS, and hereby
disclaims all other warranties and conditions, either express, implied or statutory,
including, but not limited to, any (if any) implied warranties, duties or conditions of
merchantability, of fitness for a particular purpose, of accuracy or completeness of
responses, of results, of workmanlike effort, of lack of viruses, and of lack of
negligence, all with regard to the document. ALSO, THERE IS NO WARRANTY OR
CONDITION OF TITLE, QUIET ENJOYMENT, QUIET POSSESSION, CORRESPONDENCE

TO DESCRIPTION OR NON-INFRINGEMENT OF ANY INTELLECTUAL PROPERTY
RIGHTS WITH REGARD TO THE DOCUMENT.

IN NO EVENT WILL IBM OR MICROSOFT OR VERISIGN BE LIABLE TO ANY OTHER
PARTY FOR THE COST OF PROCURING SUBSTITUTE GOODS OR SERVICES, LOST
PROFITS, LOSS OF USE, LOSS OF DATA, OR ANY INCIDENTAL, CONSEQUENTIAL,
DIRECT, INDIRECT, OR SPECIAL DAMAGES WHETHER UNDER CONTRACT, TORT,
WARRANTY, OR OTHERWISE, ARISING IN ANY WAY OUT OF THIS OR ANY OTHER
AGREEMENT RELATING TO THIS DOCUMENT, WHETHER OR NOT SUCH PARTY HAD
ADVANCE NOTICE OF THE POSSIBILITY OF SUCH DAMAGES.

Abstract
WS-Security describes enhancements to SOAP messaging to provide quality of
protection through message integrity, message confidentiality, and single message
authentication. These mechanisms can be used to accommodate a wide variety of
security models and encryption technologies.

WS-Security also provides a general-purpose mechanism for associating security
tokens with messages. No specific type of security token is required by WS-Security.
It is designed to be extensible (e.g. support multiple security token formats). For
example, a client might provide proof of identity and proof that they have a
particular business certification.

Additionally, WS-Security describes how to encode binary security tokens.
Specifically, the specification describes how to encode X.509 certificates and
Kerberos tickets as well as how to include opaque encrypted keys. It also includes
extensibility mechanisms that can be used to further describe the characteristics of
the credentials that are included with a message.

Composable Architecture
By using the SOAP extensibility model, SOAP-based specifications are designed to be
composed with each other to provide a rich messaging environment. By itself, WS-
Security does not ensure security nor does it provide a complete security solution.
WS-Security is a building block that is used in conjunction with other Web service
and application-specific protocols to accommodate a wide variety of security models
and encryption technologies. Implementing WS-Security does not mean that an
application cannot be attacked or that the security cannot be compromised.

Status
WS-Security and related specifications are provided as-is and for review and
evaluation only. IBM and Microsoft and VeriSign hope to solicit your contributions
and suggestions in the near future. IBM and Microsoft and VeriSign make no
warrantees or representations regarding the specifications in any manner
whatsoever.

Table of Contents
1. Introduction

1.1. Goals and Requirements
1.1.1 Requirements
1.1.2. Non-Goals

1.2. Example
2. Notations and Terminology

2.1. Notational Conventions
2.2. Namespaces
2.3. Terminology

3. Quality of Protection
3.1. Message Security Model
3.2. Message Protection
3.3. Missing or Inappropriate Claims

4. Security Element
4.1. UsernameToken Element
4.2. Encoding Binary Security Tokens
4.3. SecurityTokenReference Element
4.4. ds:KeyInfo
4.5. ds:Signature

4.5.1. Algorithms
4.5.2. Signing Messages
4.5.3. Verifying Integrity
4.5.4. Example

4.6. Encryption Sub-elements
4.6.1. xenc:ReferenceList
4.6.2. xenc:EncryptedKey
4.6.3. xenc:EncryptedData
4.6.4. Processing Rules

5. Extended Example
6. Error Handling
7. Security Considerations
8. Acknowledgements
9. References

1. Introduction
This specification proposes a standard set of SOAP extensions that can be used when
building secure Web services to implement integrity and confidentiality. We refer to
this set of extensions as the “Web Services Security Language” or
“WS-Security”.

WS-Security is flexible and is designed to be used as the basis for the construction of
a wide variety of security models including PKI, Kerberos, and SSL. Specifically WS-
Security provides support for multiple security tokens, multiple trust domains,
multiple signature formats, and multiple encryption technologies.

This specification provides three main mechanisms: security token propagation,
message integrity, and message confidentiality. These mechanisms by themselves
do not provide a complete security solution. Instead, WS-Security is a building block
that can be used in conjunction with other Web service extensions and higher-level
application-specific protocols to accommodate a wide variety of security models and
encryption technologies.

These mechanisms can be used independently (e.g., to pass a security token) or in a
tightly integrated manner (e.g., signing and encrypting a message and providing a
security token hierarchy associated with the keys used for signing and encryption).

This document supercedes existing web services security specifications from IBM and
Microsoft including SOAP-SEC; Microsoft's WS-Security and WS-License; and IBM's
security token and encryption documents.

Note that Section 1 is non-normative.

1.1. Goals and Requirements
The goal of WS-Security is to enable applications to construct secure SOAP message
exchanges.

This specification is intended to provide a flexible set of mechanisms that can be
used to construct a range of security protocols; in other words this specification
intentionally does not describe explicit fixed security protocols.

As with every security protocol, significant efforts must be applied to ensure that
security protocols constructed using WS-Security are not vulnerable to a wide range
of attacks.

To summarize, the focus of this specification is to describe a single-message security
language that provides for message security that may assume an established
session, security context and/or policy agreement.

The requirements to support secure message exchange are listed below.

1.1.1 Requirements

The Web services security language must support a wide variety of security
models. The following list identifies the key driving requirements for this
specification:

• Multiple security tokens for authentication or authorization

• Multiple trust domains

• Multiple encryption technologies

• End-to-end message-level security and not just transport-level security

1.1.2. Non-Goals

The following topics are outside the scope of this document:

• Establishing a security context or authentication mechanisms that require
multiple exchanges.

• Key exchange and derived keys

• How trust is established or determined.

1.2. Example
The following example illustrates a message with a username security token:

(001) <?xml version="1.0" encoding="utf-8"?>

(002) <S:Envelope xmlns:S="http://www.w3.org/2001/12/soap-envelope"

 xmlns:ds="http://www.w3.org/2000/09/xmldsig#">

(003) <S:Header>

(004) <m:path xmlns:m="http://schemas.xmlsoap.org/rp/">

(005) <m:action>http://fabrikam123.com/getQuote</m:action>

(006) <m:to>http://fabrikam123.com/stocks</m:to>

(007) <m:id>uuid:84b9f5d0-33fb-4a81-b02b-5b760641c1d6</m:id>

(008) </m:path>

(009) <wsse:Security

 xmlns:wsse="http://schemas.xmlsoap.org/ws/2002/04/secext">

(010) <wsse:UsernameToken Id="MyID">

(011) <wsse:Username>Zoe</wsse:Username>

(012) </wsse:UsernameToken>

(013) <ds:Signature>

(014) <ds:SignedInfo>

(015) <ds:CanonicalizationMethod

 Algorithm=
 "http://www.w3.org/2001/10/xml-exc-c14n#"/>

(016) <ds:SignatureMethod

 Algorithm=
 "http://www.w3.org/2000/09/xmldsig#hmac-sha1"/>

(017) <ds:Reference URI="#MsgBody">

(018) <ds:DigestMethod
 Algorithm=
 "http://www.w3.org/2000/09/xmldsig#sha1"/>

(019) <ds:DigestValue>LyLsF0Pi4wPU...</ds:DigestValue>

(020) </ds:Reference>

(021) </ds:SignedInfo>

(022) <ds:SignatureValue>DJbchm5gK...</ds:SignatureValue>

(023) <ds:KeyInfo>

(024) <wsse:SecurityTokenReference>

(025) <wsse:Reference URI="#MyID"/>

(026) </wsse:SecurityTokenReference>

(027) </ds:KeyInfo>

(028) </ds:Signature>

(029) </wsse:Security>

(030) </S:Header>

(031) <S:Body Id="MsgBody">

(032) <tru:StockSymbol xmlns:tru="http://fabrikam123.com/payloads">
 QQQ
 </tru:StockSymbol>

(033) </S:Body>

(034) </S:Envelope>

The first two lines start the SOAP envelope. Line (003) begins the headers that are
associated with this SOAP message. Lines (004) to (008) specify how to route this
message (as defined in WS-Routing).

Line (009) starts the <Security> header that we define in this specification. This
header contains security information for an intended receiver. This element
continues until line (029)

Lines (010) to (012) specify a security token that is associated with the message. In
this case, it defines username of the client using the <UsernameToken>. Note that
here we assume the service knows the password – in other words, it is a shared
secret.

Lines (013) to (028) specify a digital signature. This signature ensures the integrity
of the signed elements (that they aren't modified). The signature uses the XML
Signature specification. In this example, the signature is based on a key generated
from the users' password; typically stronger signing mechanisms would be used (see
the Extended Example below).

Lines (014) to (021) describe the digital signature. Line (015) specifies how to
canonicalize (normalize) the data that is being signed.

Lines (017) to (020) select the elements that are signed. Specifically, line (017)
indicates that the <S:Body> element is signed. In this example only the message
body is signed; typically additional elements of the message, such as parts of the
routing header, should be included in the signature (see the Extended Example
below).

Line (022) specifies the signature value of the canonicalized form of the data that is
being signed as defined in the XML Signature specification.

Lines (023) to (027) provide a hint as to where to find the security token associated
with this signature. Specifically, lines (024) to (025) indicate that the security token
can be found at (pulled from) the specified URL.

Lines (031) to (033) contain the body (payload) of the SOAP message.

2. Notations and Terminology
This section specifies the notations, namespaces, and terminology used in this
specification.

2.1. Notational Conventions
The keywords "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
"SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
document are to be interpreted as described in RFC2119.

Namespace URIs (of the general form "some-URI") represent some application-
dependent or context -dependent URI as defined in RFC2396.

WS-Security is designed to work with the general SOAP message structure and
message processing model, and WS-Security should be applicable to any version of
SOAP. The current SOAP 1.2 namespace URI is used herein to provide detailed
examples, but there is no intention to limit the applicability of this specification to a
single version of SOAP.

Readers are presumed to be familiar with the terms in the Internet Security
Glossary.

2.2. Namespaces
The XML namespace URI that MUST be used by implementations of this specification
is:

 http://schemas.xmlsoap.org/ws/2002/04/secext

The following namespaces are used in this document:

Prefix Namespace

S http://www.w3.org/2001/12/soap-envelope

ds http://www.w3.org/2000/09/xmldsig#

xenc http://www.w3.org/2001/04/xmlenc#

m http://schemas.xmlsoap.org/rp

wsse http://schemas.xmlsoap.org/ws/2002/04/secext

2.3. Terminology
We provide basic definitions for the security terminology used in this specification.

Claim – A claim is a statement that a client makes (e.g. name, identity, key, group,
privilege, capability, etc).

Security Token – A security token represents a collection of claims.

Signed Security Token – A signed security token is a security token that is
asserted and cryptographically endorsed by a specific authority (e.g. an X.509
certificate or a Kerberos ticket).

Proof-of-Possession – The proof-of-possession information is data that is used in a
proof process to demonstrate the sender's knowledge of information that SHOULD
only be known to the claiming sender of a security token.

Integrity – Integrity is the process by which it is guaranteed that information is not
modified in transit.

Confidentiality – Confidentiality is the process by which data is protected such that
only authorized actors or security token owners can view the data

Digest – A digest is a cryptographic checksum of an octet stream.

Signature - A signature is a cryptographic binding of a proof-of-possession and a
digest. This covers both symmetric key-based and public key-based signatures.
Consequently, non-repudiation is not always achieved.

Attachment – An attachment is a generic term referring to additional data that
travels with a SOAP message, but is not part of the SOAP Envelope.

3. Quality of Protection
In order to secure a SOAP message, two types of threats should be considered: 1)
the message could be modified or read by antagonists or 2) an antagonist could send
messages to a service that, while well-formed, lack appropriate security claims to
warrant processing.

To understand these threats we define a message security model.

3.1. Message Security Model
In this document we specify an abstract message security model in terms of security
tokens combined with digital signatures as proof of possession of the security token
(key).

Security tokens assert claims and signatures provide a mechanism for proving the
sender’s knowledge of the key. As well, the signature can be used to "bind" or
"associate" the signature with the claims in the security token (assuming the token is
trusted). Note that such a binding is limited to those elements covered by the
signature. Furthermore note that this document does not specify a particular
method for authentication, it simply indicates that security tokens MAY be bound to
messages.

A claim can be either endorsed or unendorsed by a trusted authority. A set of
endorsed claims is usually represented as a signed security token that is digitally
signed or encrypted by the authority. An X.509 certificate, claiming the binding
between one's identity and public key, is an example of a signed security token. An
endorsed claim can also be represented as a reference to an authority so that the
receiver can "pull" the claim from the referenced authority.

An unendorsed claim can be trusted if there is a trust relationship between the
sender and the receiver. For example, the unendorsed claim that the sender is Bob
is sufficient for a certain receiver to believe that the sender is in fact Bob, if the
sender and the receiver use a trusted connection and there is an out-of-band trust
relationship between them.

One special type of unendorsed claim is Proof-of-Possession. Such a claim proves
that the sender has a particular piece of knowledge that is verifiable by, appropriate
actors. For example, a username/password is a security token with this type of
claim. A Proof-of-Possession claim is sometimes combined with other security

tokens to prove the claims of the sender. Note that a digital signature used for
message integrity can also be used as a Proof-of-Possession claim, although in this
specification we do not consider such a digital signature as a type of security token.

It should be noted that this security model, by itself, is subject to multiple security
attacks. Refer to the Security Considerations section for additional details.

3.2. Message Protection
Protecting the message content from being intercepted (confidentiality) or illegally
modified (integrity) are primary security concerns. This specification provides a
means to protect a message by encrypting and/or digitally signing a body, a header,
an attachment, or any combination of them (or parts of them).

Message integrity is provided by leveraging XML Signature in conjunction with
security tokens to ensure that messages are transmitted without modifications. The
integrity mechanisms are designed to support multiple signatures, potentially by
multiple actors, and to be extensible to support additional signature formats.

Message confidentiality leverages XML Encryption in conjunction with security tokens
to keep portions of a SOAP message confidential. The encryption mechanisms are
designed to support additional encryption processes and operations by multiple
actors.

3.3. Missing or Inappropriate Claims
The message receiver SHOULD reject a message with invalid signature, missing or
inappropriate claims as it is an unauthorized (or malformed) message. This
specification provides a flexible way for the message sender to claim the security
properties by associating zero or more security tokens with the message. An
example of a security claim is the identity of the sender; the sender can claim that
he is Bob, known as an employee of some company, and therefore he has the right
to send the message.

4. Security Element
The <Security> header block provides a mechanism for attaching security-related
information targeted at a specific receiver (SOAP actor). This MAY be either the
ultimate receiver of the message or an intermediary. Consequently, this header
block MAY be present multiple times in a SOAP message. An intermediary on the
message path MAY add one or more new sub-elements to an existing <Security>
header block if they are targeted for the same SOAP node or it MAY add one or more
new headers for additional targets.

As stated, a message MAY have multiple <Security> header blocks if they are
targeted for separate receivers. However, only one <Security> header block can
omit the S:actor attribute and no two <Security> header blocks can have the same
value for S:actor. Message security information targeted for different receivers
MUST appear in different <Security> header blocks. The <Security> header block
without a specified S:actor can be consumed by anyone, but MUST NOT be removed
prior to the final destination as determined by WS-Routing.

As elements are added to the <Security> header block, they should be prepended to
the existing elements. As such, the <Security> header block represents the signing
and encryption steps the message sender took to create the message. This
prepending rule ensures that the receiving application MAY process sub-elements in

the order they appear in the <Security> header block, because there will be no
forward dependency among the sub-elements. Note that this specification does not
impose any specific order of processing the sub-elements. The receiving application
can use whatever policy is needed.

When a sub-element refers to a key carried in another sub-element (for example, a
signature sub-element that refers to a binary security token sub-element that
contains the X.509 certificate used for the signature), the key-bearing security token
SHOULD be prepended subsequent to the key-using sub-element being added, so
that the key material appears before the key-using sub-element.

The following illustrates the syntax of this header:

<S:Envelope>

 <S:Header>

 ...

 <Security S:actor="..." S:mustUnderstand="...">

 ...

 </Security>

 ...

 </S:Header>

 ...

</S:Envelope>

The following describes the attributes and elements listed in the example above:

/Security
This is the header block for passing security-related message information to a
receiver.

/Security/@S:actor
This attribute allows a specific SOAP actor to be identified. This attribute is not
required; however, no two instances of the header block may omit an actor or
specify the same actor.

/Security/{any}
This is an extensibility mechanism to allow different (extensible) types of security
information, based on a schema, to be passed.

/Security/@{any}
This is an extensibility mechanism to allow additional attributes, based on
schemas, to be added to the header.

The following sub-sections outline new and existing elements that are expected to be
used within the <Security> header.

4.1. UsernameToken Element
We introduce the <UsernameToken> as a way of proving a username and optional
password information.

The following illustrates the syntax of this element:

<UsernameToken Id="...">

 <Username>...</Username>

 <Password Type="...">...</Password>

</UsernameToken>

The following describes the attributes and elements listed in the example above:

/UsernameToken
This element is used for sending basic authentication information.

/UsernameToken/@Id
A string label for this security token.

/UsernameToken/Username
This required element specifies the username of the authenticating party.

/UsernameToken/Username/@{any}
This is an extensibility mechanism to allow additional attributes, based on
schemas, to be added to the header.

/UsernameToken/Password
This optional element provides password information. It is RECOMMENDED that
this element only be passed when a secure transport is being used.

/UsernameToken/Password/@Type
This optional attribute specifies the type of password being provided. The
following table identifies the pre-defined types:

Value Description

wsse:PasswordText (default) The actual password for the username.

wsse:PasswordDigest The digest of the password for the
username. The value is a base64-
encoded SHA1 hash value of the UTF8-
encoded password.

/UsernameToken/Password/@{any}
This is an extensibility mechanism to allow additional attributes, based on
schemas, to be added to the header.

/UsernameToken/{any}
This is an extensibility mechanism to allow different (extensible) types of security
information, based on a schema, to be passed.

/UsernameToken/@{any}
This is an extensibility mechanism to allow additional attributes, based on
schemas, to be added to the header.

The following illustrates the use of this element:

<S:Envelope xmlns:S="http://www.w3.org/2001/12/soap-envelope"
 xmlns:wsse="http://schemas.xmlsoap.org/ws/2002/04/secext">

 <S:Header>

 ...

 <wsse:Security>

 <wsse:UsernameToken>

 <wsse:Username>Zoe</wsse:Username>

 <wsse:Password>ILoveDogs</wsse:Password>

 </wsse:UsernameToken>

 </wsse:Security>

 ...

 </S:Header>

 ...

</S:Envelope>

4.2. Encoding Binary Security Tokens
Any XML-based security token can be specified in the <Security> header. However,
binary (e.g., X.509 certificates and Kerberos tickets) or other non-XML formats
require a special encoding format for inclusion.

A binary security token has two attributes that are used to interpret it. The
ValueType attribute indicates what the security token is, for example, a Kerberos
ticket. The EncodingType tells how the security token is encoded, for example
Base64Binary.

The BinarySecurityToken element defines a security token that is binary encoded.
The encoding is specified using the EncodingType attribute, and the value type and
space are specified using the ValueType attribute.

The following is an overview of the syntax:

 <BinarySecurityToken Id=...
 EncodingType=...
 ValueType=.../>

The following describes the attributes and elements listed in the example above:

 /BinarySecurityToken
This element is used to include a binary-encoded security token.

/BinarySecurityToken/@Id
An optional string label for this security token.

/BinarySecurityToken/@ValueType
The ValueType attribute is used to indicate the "value space" of the encoded
binary data (e.g. an X.509 certificate). The ValueType attribute allows a
qualified name that defines the value type and space of the encoded binary data.
This attribute is extensible using XML namespaces.

/BinarySecurityToken/@EncodingType
The EncodingType attribute is used to indicate, using a QName, the encoding
format of the binary data (e.g., wsse:Base64Binary). We introduce this new
attribute, as there are currently issues that make derivations of mixed simple and
complex types difficult within XML Schema. The EncodingType attribute is
interpreted to indicate the encoding format of the element. The following
encoding formats are pre-defined:

QName Description

wsse:Base64Binary XML Schema base 64 encoding

wsse:HexBinary XML Schema hex encoding

/BinarySecurityToken/@{any}
This is an extensibility mechanism to allow additional attributes, based on
schemas, to be added.

The following value spaces are defined for @ValueType:

QName Description

wsse:X509v3 X.509 v3 certificate

wsse:Kerberosv5TGT Kerberos v5 ticket as defined in Section 5.3.1
of Kerberos. This ValueType is used when the
ticket is a ticket granting ticket (TGT)

wsse:Kerberosv5ST Kerberos v5 ticket as defined in Section 5.3.1
of Kerberos. This ValueType is used when the
ticket is a service ticket (ST)

Note that XML Signature also provides mechanisms for encoding X.509
certificates. The BinarySecurityToken with ValueType="wsse:X509v3" MAY be
used when flexibility is required for encoding purposes. On the other hand, using
ds:KeyInfo may provide additional flexibility in usage scenarios.

The following example illustrates the use of BinarySecurityToken:

 <wsse:BinarySecurityToken
 xmlns:wsse="http://schemas.xmlsoap.org/ws/2002/04/secext"
 Id="myToken"
 ValueType="wsse:X509v3"

 EncodingType="wsse:Base64Binary">

 MIIEZzCCA9CgAwIBAgIQEmtJZc0...

 </wsse:BinarySecurityToken>

When a <BinarySecurityToken> is used in a signature—that is, it is referenced from
a <ds:Signature> element—care should be taken so that the canonicalization
algorithm (e.g., Exclusive XML Canonicalization) does not allow unauthorized
replacement of namespace prefixes of the QNames used in the attribute or element
values. In particular, it is RECOMMENDED that these namespace prefixes are
declared within the <BinarySecurityToken> element if this token does not carry the
signing key (and consequently it is not cryptographically bound to the signature).
For example, if we wanted to sign the previous example, we need to include the
consumed namespace definitions. In the following example, a custom ValueType is

used. Consequently, the namespace definition for this ValueType is included in the
<BinarySecurityToken> element. Note that the definition of wsse is also included
as it is used for the encoding type and the element.

 <wsse:BinarySecurityToken

 xmlns:wsse="http://schemas.xmlsoap.org/ws/2002/04/secext"
 Id="myToken"
 ValueType="x:MyType" xmlns:x="http://fabrikam123.com/x"

 EncodingType="wsse:Base64Binary">

 MIIEZzCCA9CgAwIBAgIQEmtJZc0...

 </wsse:BinarySecurityToken>

When a Kerberos ticket is referenced as a signature key, the signature algorithm
SHOULD be a hashed message authentication code. In particular, it is
RECOMMENDED to use HMAC-SHA1 (required by XML Signature), with the session
key in the ticket used as the shared secret key.

4.3. SecurityTokenReference Element
A security token conveys a set of claims. Sometimes these claims reside somewhere
else and need to be "pulled" by the receiving application. The
<SecurityTokenReference> element provides an extensible mechanism for
referencing security tokens.

The following illustrates the syntax of this element:

<SecurityTokenReference Id="...">

 <Reference URI="..."/>

</SecurityTokenReference>

The following describes the elements defined above:

/SecurityTokenReference
This element provides a reference to a security token.

/SecurityTokenReference/@Id
A string label for this security token reference.

/SecurityTokenReference/Reference
This element is used to identify a URI location for locating a security token.

/SecurityTokenReference/Reference/@URI
This attribute specifies a URI for where to find a security token.

/SecurityTokenReference/{any}
This is an extensibility mechanism to allow different (extensible) types of security
information, based on a schema, to be passed.

/SecurityTokenReference/@{any}
This is an extensibility mechanism to allow additional attributes, based on
schemas, to be added to the header.

The following illustrates the use of this element:

<wsse:SecurityTokenReference
 xmlns:wsse="http://schemas.xmlsoap.org/ws/2002/04/secext">

 <wsse:Reference

 URI="http://www.fabrikam123.com/tokens/Zoe#X509token"/>

</wsse:SecurityTokenReference>

This element can also be used as a direct child element of <ds:KeyInfo> to indicate
the hint to retrieve the key information from a security token placed somewhere
else. In particular, it is RECOMMENDED, when using XML Signature and XML
Encryption, that a <SecurityTokenReference> element be placed inside a
<ds:KeyInfo> to reference the security token used for the signature or encryption.

4.4. ds:KeyInfo
For certain key types, such as X.509 certificate, both the <ds:KeyInfo> element
(from XML Signature) and the <BinarySecurityToken> element can be used for
carrying the key information. The <ds:KeyInfo> element is allowed for different key
types and for future extensibility. However, in this specification, the use of
<BinarySecurityToken> is the RECOMMENDED way to carry key material if the key
type is well defined in Section 4.2.

The following example illustrates use of this element to fetch a named key:

<ds:KeyInfo Id="..." xmlns:ds="http://www.w3.org/2000/09/xmldsig#">

 <ds:KeyName>CN=Hiroshi Maruyama, C=JP</ds:KeyName>

</ds:KeyInfo>

4.5. ds:Signature
Message senders may want to enable message receivers to determine whether a
message was altered in transit and to verify that a message was sent by the
possessor of a particular security token.

When an XML Signature is used in conjunction with the <SecurityTokenReference>
element, the security token of a message signer may be correlated and a mapping
made between the claims of the security token and the message as evaluated by the
application.

Because of the mutability of some SOAP headers, senders SHOULD NOT use the
Enveloped Signature Transform defined in XML Signature. Instead, messages
SHOULD explicitly include the desired elements to be signed. Similarly, senders
SHOULD NOT use the Enveloping Signature defined in XML Signature.

This specification allows for multiple signatures to be attached to a message, each
referencing different, even overlapping, parts of the message. This is important for
many distributed applications where messages flow through multiple processing
stages. For example, a sender may submit an order that contains an orderID
header. The sender signs the orderID header and the body of the request (the
contents of the order). When this is received by the order processing sub-system, it
may insert a shippingID into the header. The order sub-system would then sign, at
a minimum, the orderID and the shippingID, and possibly the body as well. Then
when this order is processed and shipped by the shipping department, a shippedInfo
header might be appended. The shipping department would sign, at a minimum, the
shippedInfo and the shippingID and possibly the body and forward the message to
the billing department for processing. The billing department can verify the
signatures and determine a valid chain of trust for the order, as well as who did
what.

All compliant implementations MUST be able to process a <ds:Signature> element.

4.5.1. Algorithms

The WS-Security specification builds on XML Signature and therefore has the same
algorithm requirements as those specified in the XML Signature specification.

The following table outlines additional algorithms that WS-Security RECOMMENDS:

Algorithm Type Algorithm Algorithm URI

Canonicalization Exclusive XML
Canonicalization

http://www.w3.org/2001/10/xml-exc-c14n#

Transformations XML Decryption
Transformation

http://www.w3.org/2001/04/decrypt#

The Exclusive XML Canonicalization algorithm addresses the pitfalls of general
canonicalization that can occur from leaky namespaces with pre-existing signatures.

Finally, if a sender wishes to sign a message before encryption, they should use the
Decryption Transformation for XML Signature.

4.5.2. Signing Messages

The <Security> header block is used to carry a signature compliant with the XML
Signature specification within a SOAP Envelope for the purpose of signing one or
more elements in the SOAP Envelope. Multiple signature entries MAY be added into a
single SOAP Envelope within the <Security> header block. Senders should take
care to sign all important elements of the message, but care must be taken in
creating a policy that will not to sign parts of the message that might legitimately be
altered in transit.

SOAP applications MUST satisfy the following conditions:

1. The application MUST be capable of processing the required elements defined in
the XML Signature specification.

2. To add a signature to a <Security> header block, a <ds:Signature> element
conforming to the XML Signature specification SHOULD be prepended to the
existing content of the <Security> header block. That is, the new information
would be before (prepended to) the old. All the <ds:Reference> elements
contained in the signature SHOULD refer to a resource within the enclosing SOAP
envelope, or in an attachment.

XPath filtering can be used to specify objects to be signed, as described in the XML
Signature specification. However, since the SOAP message exchange model allows
intermediate applications to modify the Envelope (add or delete a header block; for
example), XPath filtering does not always result in the same objects after message
delivery. Care should be taken in using XPath filtering so that there is no subsequent
validation failure due to such modifications.

The problem of modification by intermediaries is applicable to more than just XPath
processing. Digital signatures, because of canonicalization and digests, present
particularly fragile examples of such relationships. If overall message processing is to

remain robust, intermediaries must exerc ise care that their transformations do not
occur within the scope of a digitally signed component.

Due to security concerns with namespaces, this specification strongly RECOMMENDS
the use of the "Exclusive XML Canonicalization" algorithm or another canonicalization
algorithm that provides equivalent or greater protection.

4.5.3. Verifying Integrity

The validation of a <ds:Signature> entry inside an <Security> header block fails if

1. the syntax of the content of the entry does not conform to this specification, or

2. the validation of the signature contained in the entry fails according to the core
validation of the XML Signature specification, or

3. the application applying its own trust policy rejects the message for some reason
(e.g., the signature is created by an untrusted key – verifying the previous two
steps only performs cryptographic verification of the signature).

If the verification of the signature entry fails, applications MAY report the failure to
the sender using the fault codes defined in Section 6.

4.5.4. Example

The following sample message illustrates the use of integrity and security tokens.
For this example, we use a fictitious "RoutingTransform" that selects the immutable
routing headers along with the message body.

<?xml version="1.0" encoding="utf-8"?>

<S:Envelope xmlns:S="http://www.w3.org/2001/12/soap-envelope"

 xmlns:ds="http://www.w3.org/2000/09/xmldsig#"
 xmlns:wsse="http://schemas.xmlsoap.org/ws/2002/04/secext"
 xmlns:xenc="http://www.w3.org/2001/04/xmlenc#">

 <S:Header>

 <m:path xmlns:m="http://schemas.xmlsoap.org/rp">

 <m:action>http://fabrikam123.com/getQuote</m:action>

 <m:to>http://fabrikam123.com/stocks</m:to>

 <m:from>mailto:johnsmith@fabrikam123.com</m:from>

 <m:id>uuid:84b9f5d0-33fb-4a81-b02b-5b760641c1d6</m:id>

 </m:path>

 <wsse:Security>

 <wsse:BinarySecurityToken

 ValueType="wsse:X509v3"

 EncodingType="wsse:Base64Binary"

 Id="X509Token">

 MIIEZzCCA9CgAwIBAgIQEmtJZc0rqrKh5i...

 </wsse:BinarySecurityToken>

 <ds:Signature>

 <ds:SignedInfo>

 <ds:CanonicalizationMethod Algorithm=

 "http://www.w3.org/2001/10/xml-exc-c14n#"/>

 <ds:SignatureMethod Algorithm=
 "http://www.w3.org/2000/09/xmldsig#rsa-sha1"/>

 <ds:Reference>

 <ds:Transforms>

 <ds:Transform Algorithm=
 "http://...#RoutingTransform"/>

 <ds:Transform Algorithm=
 "http://www.w3.org/2001/10/xml-exc-c14n#"/>

 </ds:Transforms>

 <ds:DigestMethod Algorithm=
 "http://www.w3.org/2000/09/xmldsig#sha1"/>

 <ds:DigestValue>EULddytSo1...</ds:DigestValue>

 </ds:Reference>

 </ds:SignedInfo>

 <ds:SignatureValue>

 BL8jdfToEb1l/vXcMZNNjPOV...

 </ds:SignatureValue>

 <ds:KeyInfo>

 <wsse:SecurityTokenReference>

 <wsse:Reference URI="#X509Token"/>

 </wsse:SecurityTokenReference>

 </ds:KeyInfo>

 </ds:Signature>

 </wsse:Security>

 </S:Header>

 <S:Body>

 <tru:StockSymbol xmlns:tru="http://fabrikam123.com/payloads">
 QQQ

 </tru:StockSymbol>

 </S:Body>

</S:Envelope>

4.6. Encryption Sub-elements
This specification allows encryption of any combination of body blocks, header blocks,
any of these sub-structures, and attachments by either a common symmetric key

shared by the sender and the receiver or a key carried in the message in an
encrypted form.

In order to allow this flexibility, we leverage the XML Encryption standard.
Specifically, we describe how three elements (listed below and defined in XML
Encryption) can be used within the <Security> header block. When a sender or an
intermediary encrypts portion(s) of a SOAP message using XML Encryption they will
add a sub-element to the <Security> header block. Furthermore, the encrypting
party MUST prepend the sub-element into the <Security> header block for the
targeted receiver that is expected to decrypt these encrypted portions. The
combined process of encrypting portion(s) of a message and adding one of these
sub-elements referring to the encrypted portion(s) is called an encryption step
hereafter. The sub-element should have enough information for the receiver to
identify which portions of the message are to be decrypted by the receiver.

4.6.1. xenc:ReferenceList

When encrypting elements or element contents within a SOAP envelope, the
<xenc:ReferenceList> element from XML Encryption MAY be used to create a
manifest of encrypted portion(s), which are expressed as <xenc:EncryptedData>
elements within the envelope. An element or element content to be encrypted by
this encryption step MUST be replaced by a corresponding <xenc:EncryptedData>
according to XML Encryption. All the <xenc:EncryptedData> elements created by
this encryption step SHOULD be listed in <xenc:DataReference> elements inside an
<xenc:ReferenceList> element.

Although in XML Encryption, <xenc:ReferenceList> is originally designed to be
used within an <xenc:EncryptedKey> element (which implies that all the referenced
<xenc:EncryptedData> elements are encrypted by the same key), this specification
allows that <xenc:EncryptedData> elements referenced by the same
<xenc:ReferenceList> MAY be encrypted by different keys. Each encryption key
can be specified in <ds:KeyInfo> within individual <xenc:EncryptedData>.

A typical situation where the <xenc:ReferenceList> sub-element is useful is that
the sender and the receiver use a shared secret key. The following illustrates the
use of this sub-element:

<S:Envelope

 xmlns:S="http://www.w3.org/2001/12/soap-envelope"
 xmlns:ds="http://www.w3.org/2000/09/xmldsig#"
 xmlns:wsse="http://schemas.xmlsoap.org/ws/2002/04/secext"
 xmlns:xenc="http://www.w3.org/2001/04/xmlenc#">

 <S:Header>

 <wsse:Security>

 <xenc:ReferenceList>

 <xenc:DataReference URI="#bodyID"/>

 </xenc:ReferenceList>

 </wsse:Security>

 </S:Header>

 <S:Body>

 <xenc:EncryptedData Id="bodyID">

 <ds:KeyInfo>

 <ds:KeyName>CN=Hiroshi Maruyama, C=JP</ds:KeyName>

 </ds:KeyInfo>

 <xenc:CipherData>

 <xenc:CipherValue>...</xenc:CipherValue>

 </xenc:CipherData>

 </xenc:EncryptedData>

 </S:Body>

</S:Envelope>

4.6.2. xenc:EncryptedKey

When the encryption step involves encrypting elements or element contents within a
SOAP envelope with a key, which is in turn to be encrypted by the recipient’s key
and embedded in the message, <xenc:EncryptedKey> MAY be used for carrying
such an encrypted key. This sub-element SHOULD have a manifest, that is, an
<xenc:ReferenceList> element, in order for the recipient to know the portions to be
decrypted with this key (if any exist). An element or element content to be
encrypted by this encryption step MUST be replaced by a corresponding
<xenc:EncryptedData> according to XML Encryption. All the <xenc:EncryptedData>
elements created by this encryption step SHOULD be listed in the
<xenc:ReferenceList> element inside this sub-element.

This construct is useful when encryption is done by a randomly generated symmetric
key that is in turn encrypted by the recipient’s public key. The following illustrates
the use of this element:

<S:Envelope
 xmlns:S="http://www.w3.org/2001/12/soap-envelope"
 xmlns:ds="http://www.w3.org/2000/09/xmldsig#"
 xmlns:wsse="http://schemas.xmlsoap.org/ws/2002/04/secext"
 xmlns:xenc="http://www.w3.org/2001/04/xmlenc#">

 <S:Header>

 <wsse:Security>

 <xenc:EncryptedKey>

 <xenc:EncryptionMethod Algorithm="..."/>

 <ds:KeyInfo>

 <ds:KeyName>CN=Hiroshi Maruyama, C=JP</ds:KeyName>

 </ds:KeyInfo>

 <xenc:CipherData>

 <xenc:CipherValue>...</xenc:CipherValue>

 </xenc:CipherData>

 <xenc:ReferenceList>

 <xenc:DataReference URI="#bodyID"/>

 </xenc:ReferenceList>

 </xenc:EncryptedKey>

 </wsse:Security>

 </S:Header>

 <S:Body>

 <xenc:EncryptedData Id="bodyID">

 <ds:KeyInfo>

 <ds:KeyName>CN=Hiroshi Maruyama, C=JP</ds:KeyName>

 </ds:KeyInfo>

 <xenc:CipherData>

 <xenc:CipherValue>...</xenc:CipherValue>
 </xenc:CipherData>

 </xenc:EncryptedData>

 </S:Body>

</S:Envelope>

4.6.3. xenc:EncryptedData

In some cases security-related information is provided in a purely encrypted form or
non-XML attachments MAY be encrypted. The <xenc:EncryptedData> element from
XML Encryption can be used for these scenarios. For each part of the encrypted
attachment, one encryption step is needed; that is, for each attachment to be
encrypted, one <xenc:EncryptedData> sub-element MUST be added with the
following rules (note that steps 2-4 applies only if MIME types are being used for
attachments).

1. The contents of the attachment MUST be replaced by the encrypted octet string.

2. The replaced MIME part MUST have the media type application/octet-stream.

3. The original media type of the attachment MUST be declared in the MimeType
attribute of the <xenc:EncryptedData> element.

4. The encrypted MIME part MUST be referenced by an <xenc:CipherReference>
element with a URI that points to the MIME part with cid: as the scheme
component of the URI.

The following illustrates the use of this element to indicate an encrypted attachment:

<S:Envelope
 xmlns:S="http://www.w3.org/2001/12/soap-envelope"
 xmlns:ds="http://www.w3.org/2000/09/xmldsig#"
 xmlns:wsse="http://schemas.xmlsoap.org/ws/2002/04/secext"
 xmlns:xenc="http://www.w3.org/2001/04/xmlenc#">

 <S:Header>

 <wsse:Security>

 <xenc:EncryptedData MimeType="image/png">

 <xenc:EncryptionMethod Algorithm="foo:bar"/>

 <ds:KeyInfo>

 <ds:KeyName>CN=Hiroshi Maruyama, C=JP</ds:KeyName>

 </ds:KeyInfo>

 <xenc:CipherData>

 <xenc:CipherReference URI="cid:image"/>

 </xenc:CipherData>

 </xenc:EncryptedData>

 </wsse:Security>

 </S:Header>

 <S:Body> </S:Body>

</S:Envelope>

4.6.4. Processing Rules

Encrypted parts or attachments to the SOAP message using one of the sub-elements
defined above MUST be in compliance with the XML Encryption specification. An
encrypted SOAP envelope MUST still be a valid SOAP envelope. The message creator
MUST NOT encrypt the <S:Envelope>, <S:Header>, or <S:Body> elements but MAY
encrypt child elements of either the <S:Header> and <S:Body> elements. Multiple
steps of encryption MAY be added into a single <Security> header block if they are
targeted for the same recipient.

When an element or element content inside a SOAP envelope (e.g. of the contents of
<S:Body>) is to be encrypted, it MUST be replaced by an <xenc:EncryptedData>,
according to XML Encryption and it SHOULD be referenced from the
<xenc:ReferenceList> element created by this encryption step. This specification
allows placing the encrypted octet stream in an attachment. For example, if an
<xenc:EncryptedData> appearing inside the <S:Body> element has
<xenc:CipherReference> that refers to an attachment, then the decrypted octet
stream replaces the <xenc:EncryptedData>. However, if the <enc:EncryptedData>
element is located in the <Security> header block and it refers to an attachment,
then the decrypted octet stream MUST replace the encrypted octet stream in the
attachment.

Encryption

The general steps (non-normative) for creating an encrypted SOAP message in
compliance with this specification are listed below (note that use of
<xenc:ReferenceList> is RECOMMENDED).

1. Create a new SOAP envelope.

2. Create an <xenc:ReferenceList> sub-element, an <xenc:EncryptedKey> sub-
element, or an <xenc:EncryptedData> sub-element in the <Security> header
block (note that if the SOAP "actor" and "mustUnderstand" attributes are
different, then a new header block may be necessary), depending on the type of
encryption.

3. Locate data items to be encrypted, i.e., XML elements, element contents within
the target SOAP envelope, and attachments.

4. Encrypt the data items as follows: For each XML element or element content
within the target SOAP envelope, encrypt it according to the processing rules of
the XML Encryption specification. Each selected original element or element
content MUST be removed and replaced by the resulting <xenc:EncryptedData>
element. For an attachment, the contents MUST be replaced by encrypted cipher
data as described in section 4.5.3.

5. The optional <ds:KeyInfo> element in the <xenc:EncryptedData> element MAY
reference another <ds:KeyInfo> element. Note that if the encryption is based on
an attached security token, then a <SecurityTokenReference> element SHOULD
be added to the <ds:KeyInfo> element to facilitate locating it.

6. Create an <xenc:DataReference> element referencing the generated
<xenc:EncryptedData> elements. Add the created <xenc:DataReference>
element to the <xenc:ReferenceList>.

Decryption

On receiving a SOAP envelope with encryption header entries, for each encryption
header entry the following general steps should be processed (non-normative):

1. Locate the <xenc:EncryptedData> items to be decrypted (possibly using the
<xenc:ReferenceList>).

2. Decrypt them as follows: For each element in the target SOAP envelope, decrypt
it according to the processing rules of the XML Encryption specification and the
processing rules listed above.

3. If the decrypted data is part of an attachment and MIME types were used, then
revise the MIME type of the attachment to the original MIME type (if one exists).

If the decryption fails for some reason, applications MAY report the failure to the
sender using the fault code defined in Section 6.

5. Extended Example
The following sample message illustrates the use of security tokens, signatures, and
encryption. For this example, we use a fictitious "RoutingTransform" that selects the
immutable routing headers along with the message body.

(001) <?xml version="1.0" encoding="utf-8"?>

(002) <S:Envelope xmlns:S="http://www.w3.org/2001/12/soap-envelope"

 xmlns:ds="http://www.w3.org/2000/09/xmldsig#"

 xmlns:wsse="http://schemas.xmlsoap.org/ws/2002/04/secext"
 xmlns:xenc="http://www.w3.org/2001/04/xmlenc#">

(003) <S:Header>

(004) <m:path xmlns:m="http://schemas.xmlsoap.org/rp/">

(005) <m:action>http://fabrikam123.com/getQuote</m:action>

(006) <m:to>http://fabrikam123.com/stocks</m:to>

(007) <m:from>mailto:johnsmith@fabrikam123.com</m:from>

(008) <m:id>uuid:84b9f5d0-33fb-4a81-b02b-5b760641c1d6</m:id>

(009) </m:path>

(010) <wsse:Security>

(011) <wsse:BinarySecurityToken

 ValueType="wsse:X509v3"

 Id="X509Token"

 EncodingType="wsse:Base64Binary">

(012) MIIEZzCCA9CgAwIBAgIQEmtJZc0rqrKh5i...

(013) </wsse:BinarySecurityToken>

(014) <xenc:EncryptedKey>

(015) <xenc:EncryptionMethod Algorithm=

 "http://www.w3.org/2001/04/xmlenc#rsa-1_5"/>

(016) <ds:KeyInfo>

(017) <ds:KeyName>CN=Hiroshi Maruyama, C=JP</ds:KeyName>

(018) </ds:KeyInfo>

(019) <xenc:CipherData>

(020) <xenc:CipherValue>d2FpbmdvbGRfE0lm4byV0...

(021) </xenc:CipherValue>

(022) </xenc:CipherData>

(023) <xenc:ReferenceList>

(024) <xenc:DataReference URI="#enc1"/>

(025) </xenc:ReferenceList>

(026) </xenc:EncryptedKey>

(027) <ds:Signature>

(028) <ds:SignedInfo>

(029) <ds:CanonicalizationMethod

 Algorithm="http://www.w3.org/2001/10/xml-exc-c14n#"/>

(030) <ds:SignatureMethod

 Algorithm="http://www.w3.org/2000/09/xmldsig#rsa-sha1"/>

(031) <ds:Reference>

(032) <ds:Transforms>

(033) <ds:Transform
 Algorithm="http://...#RoutingTransform"/>

(034) <ds:Transform

 Algorithm="http://www.w3.org/2001/10/xml-exc-c14n#"/>

(035) </ds:Transforms>

(036) <ds:DigestMethod
 Algorithm="http://www.w3.org/2000/09/xmldsig#sha1"/>

(037) <ds:DigestValue>LyLsF094hPi4wPU...

(038) </ds:DigestValue>

(039) </ds:Reference>

(040) </ds:SignedInfo>

(041) <ds:SignatureValue>

(042) Hp1ZkmFZ/2kQLXDJbchm5gK...

(043) </ds:SignatureValue>

(044) <ds:KeyInfo>

(045) <wsse:SecurityTokenReference>

(046) <wsse:Reference URI="#X509Token"/>

(047) </wsse:SecurityTokenReference>

(048) </ds:KeyInfo>

(049) </ds:Signature>

(050) </wsse:Security>

(051) </S:Header>

(052) <S:Body>

(053) <xenc:EncryptedData
 Type="http://www.w3.org/2001/04/xmlenc#Element"
 Id="enc1">

(054) <xenc:EncryptionMethod
 Algorithm="http://www.w3.org/2001/04/xmlenc#3des-cbc"/>

(055) <xenc:CipherData>

(056) <xenc:CipherValue>d2FpbmdvbGRfE0lm4byV0...

(057) </xenc:CipherValue>

(058) </xenc:CipherData>

(059) </xenc:EncryptedData>

(060) </S:Body>

(061) </S:Envelope>

Let's review some of the key sections of this example:

Lines (003)-(051) contain the SOAP message headers.

Lines (004)-(009) specify the message routing information (as define in WS-
Routing). In this case we are sending the message to the
http://fabrikam123.com/stocks service requesting the "getQuote" action.

Lines (010)-(050) represent the <Security> header block. This contains the
security-related information for the message.

Lines (011)-(013) specify a security token that is associated with the message. In
this case, it specifies an X.509 certificate that is encoded as Base64. Line (012)
specifies the actual Base64 encoding of the certificate.

Lines (014)-(026) specify the key that is used to encrypt the body of the message.
Since this is a symmetric key, it is passed in an encrypted form. Line (015) defines
the algorithm used to encrypt the key. Lines (016)-(018) specify the name of the
key that was used to encrypt the symmetric key. Lines (019)-(022) specify the
actual encrypted form of the symmetric key. Lines (023)-(025) identify the
encryption block in the message that uses this symmetric key. In this case it is only
used to encrypt the body (Id="enc1").

Lines (027)-(049) specify the digital signature. In this example, the signature is
based on the X.509 certificate. Lines (028)-(040) indicate what is being signed.
Specifically, Line (029) indicates the canonicalization algorithm (exclusive in this
example). Line (030) indicates the signature algorithm (rsa over sha1 in this case).

Lines (031)-(039) identify the parts of the message that are being signed.
Specifically, Line (033) identifies a "transform". This fictitious transforms selects the
immutable portions of the routing header and the message body. Line (034)
specifies the canonicalization algorithm to use on the selected message parts from
line (033). Line (036) indicates the digest algorithm use on the canonicalized data.
Line (037) specifies the digest value resulting from the specified algorithm on the
canonicalized data.

Lines (041)-(043) indicate the actual signature value – specified in Line (042).

Lines (044)-(048) indicate the key that was used for the signature. In this case, it is
the X.509 certificate included in the message. Line (046) provides a URI link to the
Lines (011)-(013).

The body of the message is represented by Lines (052)-(060).

Lines (053)-(059) represent the encrypted metadata and form of the body using XML
Encryption. Line (053) indicates that the "element value" is being replaced and
identifies this encryption. Line (054) specifies the encryption algorithm – Triple-DES
in this case. Lines (055)-(058) contain the actual cipher text (i.e., the result of the
encryption). Note that we don't include a reference to the key as the key references
this encryption – Line (024).

6. Error Handling
There are many circumstances where an error can occur while processing security
information. For example:

• Invalid or unsupported type of security token, signing, or encryption

• Invalid or unauthenticated or unauthenticatable security token

• Invalid signature

• Decryption failure

• Referenced security token is unavailable.

These can be grouped into two classes of errors: unsupported and failure. For the
case of unsupported errors, the receiver MAY provide a response that informs the
sender of supported formats, etc. For failure errors, the receiver MAY choose not to
respond, as this may be a form of Denial of Service (DOS) or cryptographic

attack. We combine signature and encryption failures to mitigate certain types of
attacks.

If a failure is returned to a sender then the failure MUST be reported using SOAP's
Fault mechanism. The following tables outline the predefined security fault
codes. The "unsupported" class of errors are:

Error that occurred faultcode

An unsupported token was provided wsse:UnsupportedSecurityToken

An unsupported signature or encryption
algorithm was used

wsse:UnsupportedAlgorithm

The "failure" class of errors are:

Error that occurred faultcode

An error was discovered processing the
<Security> header.

wsse:InvalidSecurity

An invalid security token was provided wsse:InvalidSecurityToken

The security token could not be
authenticated or authorized

wsse:FailedAuthentication

The signature or decryption was invalid wsse:FailedCheck

Referenced security token could not be
retrieved

wsse:SecurityTokenUnavailable

7. Security Considerations
It is strongly RECOMMENDED that messages include digitally signed elements to
allow message receivers to detect replays of the message when the messages are
exchanged via an open network. These can be part of the message or of the
headers defined from other SOAP extensions. Four typical approaches are:

• Timestamp

• Sequence Number

• Expirations

• Message Correlation

This specification defines the use of XML Signature and XML Encryption in SOAP
headers. As one of the building blocks for securing SOAP messages, it is intended to
be used in conjunction with other security techniques. Digital signatures need to be
understood in the context of other security mechanisms and possible threats to an
entity.

Digital signatures alone do not provide message authentication. One can record a
signed message and resend it (a replay attack). To prevent this type of attack,
digital signatures must be combined with an appropriate means to ensure the
uniqueness of the message, such as timestamps or sequence numbers (see earlier
section for additional details).

When digital signatures are used for verifying the identity of the sending party, the
sender must prove the possession of the private key. One way to achieve this is to
use a challenge-response type of protocol. Such a protocol is outside the scope of
this document.

To this end, the developers can attach timestamps, expirations, and sequences to
messages.

Implementers should also be aware of all the security implications resulting from the
use of digital signatures in general and XML Signature in particular. When building
trust into an application based on a digital signature there are other technologies,
such as certificate evaluation, that must be incorporated, but these are outside the
scope of this document.

Requestors should use digital signatures to sign security tokens that do not include
signatures (or other protection mechanisms) to ensure that they have not been
altered in transit.

Also, as described in XML Encryption, we note that the combination of signing and
encryption over a common data item may introduce some cryptographic
vulnerability. For example, encrypting digitally signed data, while leaving the digital
signature in the clear, may allow plain text guessing attacks. Care should be taken
by application designers not to introduce such vulnerabilities.

8. Acknowledgements
This specification has been developed as a result of joint work with many individuals
and teams, including:

Bob Blakley, IBM
Allen Brown, Microsoft
Kelvin Lawrence, IBM
Scott Konersmann, Microsoft
David Melgar, IBM

9. References
[DIGSIG]

Informational RFC 2828, "Internet Security Glossary," May 2000.

[Kerberos]
J. Kohl and C. Neuman, "The Kerberos Network Authentication Service (V5)," RFC
1510, September 1993, http://www.ietf.org/rfc/rfc1510.txt .

[KEYWORDS]
S. Bradner, "Key words for use in RFCs to Indicate Requirement Levels," RFC
2119, Harvard University, March 1997

[SHA-1]
FIPS PUB 180-1. Secure Hash Standard. U.S. Department of Commerce /
National Institute of Standards and Technology.
http://csrc.nist.gov/publications/fips/fips180-1/fip180-1.txt

[SOAP]
W3C Note, "SOAP: Simple Object Access Protocol 1.1," 08 May 2000.

[SOAP-SEC]
W3C Note, "SOAP Security Extensions: Digital Signature," 06 February 2001.

[URI]
T. Berners-Lee, R. Fielding, L. Masinter, "Uniform Resource Identifiers (URI):
Generic Syntax," RFC 2396, MIT/LCS, U.C. Irvine, Xerox Corporation, August
1998.

[XML-C14N]
W3C Recommendation, "Canonical XML Version 1.0," 15 March 2001

[XML-Encrypt]
W3C Working Draft, "XML Encryption Syntax and Processing," 04 March 2002.

[XML-ns]
W3C Recommendation, "Namespaces in XML," 14 January 1999.

[XML-Schema1]
W3C Recommendation, "XML Schema Part 1: Structures,"2 May 2001.

[XML-Schema2]
W3C Recommendation, "XML Schema Part 2: Datatypes," 2 May 2001.

[XML Signature]
W3C Recommendation, "XML Signature Syntax and Processing," 12 February
2002.

[WS-Routing]
H. Nielsen, S. Thatte, "Web Services Routing Protocol", Microsoft, October 2001

[X509]

S. Santesson, et al,"Internet X.509 Public Key Infrastructure Qualified Certificates
Profile,"
http://www.itu.int/rec/recommendation.asp?type=items&lang=e&parent=T -REC-
X.509-200003-I

[XPath]
W3C Recommendation, "XML Path Language", 16 November 1999

