

SOAP Web Services Attacks
Part 1 – Introduction and Simple Injection

Are your web applications vulnerable?

by Sacha Faust

Table of Contents
Introduction ... 1

Background .. 1
Limitations .. 1

Understanding SOAP Communication ... 1
Request Envelope.. 1
Response Envelope... 2
Overview of the Fault Response Message .. 4

Anatomy of a SOAP Web Service.. 5
Web Service Description Language... 5

Attacking SOAP Web Services .. 8
Test Application.. 8
Parameter Tampering .. 8
Testing for Input Validation .. 9

GetProductInformationByName Test Faultstring Analysis ... 10
Prevention.. 17

Incoming Data Validation ... 18
Outgoing Data Validation ... 18

Appendix A: References... 19
Appendix B: Further Reading .. 19
Appendix C: Test Application WSDL .. 19
Appendix D: Test Application Source Code... 19
The Business Case for Application Security ... 20
About SPI Labs.. 20
About SPI Dynamics ... 20
About the WebInspect Product Line ... 21
About the Author... 21
Contact Information .. 21

© 2003 SPI Dynamics, Inc. All Right Reserved. No reproduction or redistribution without written permission.

Page i

Introduction
The World Wide Web is being used increasingly for application-to-application
communication, thanks to programmatic interfaces known as web services. In
conjunction with current technology, web services are ideal for companies clamoring to
join the e-commerce revolution.

Background

Simple Object Access Protocol (SOAP) was defined jointly by Microsoft and
DevelopMentor, and has become a World Wide Web Consortium (W3C)
recommendation. The purpose of SOAP is to allow various components to
communicate using remote functionality as if they were local. SOAP messages consist
of XML-formatted data and are described in Understanding SOAP Communication
(below).

Limitations
This white paper discusses various types of attacks based on the SOAP implementation
of Web services over HTTP and describes how you can shield your applications from
these assaults. Other types of attacks are possible and detailed descriptions of those will
be available in upcoming white papers. This paper is not intended to fully describe
SOAP, but rather to present a brief overview of key web services concepts. For in-depth
information about web services, visit the links cited in Appendix A: References and
Appendix B: Further Reading.

Understanding SOAP Communication
SOAP is a lightweight and simple XML-based protocol designed to exchange structured
and type information on the Web. In the XML schema, the envelope element is always
the root element of a SOAP message. There are two types of envelopes: Request and
Response.

Request Envelope
The Request envelope contains the information required to process the remote call.
Each request message contains a message header and a message body. The header
stores processing information such as message routing, requirements information, and
security information. The body of the message stores the information required to
process the call. The payload contains the following items:

� Name of the service called
� Location of the service
� Parameter name and data passed to the service

© 2003 SPI Dynamics, Inc. All Right Reserved. No reproduction or redistribution without written permission.

Page 1

Figure 1 shows a simple request envelope for the BabelFish web service defined at
http://www.xmethods.net/sd/2001/BabelFishService.wsdl (see Anatomy of a SOAP
Web Service for instructions on reading WSDL definitions). The request specifies the
translation mode to be English to French (as defined by the en_fr value) and asks the
service to translate the word “hi” to its French equivalent. The request does not specify
any special server handling, so it has no data in the Header field.

Figure 2 displays the raw request over HTTP.

Figure 1: Simple SOAP Request Envelope

Figure 2: Simple SOAP Request over HTTP

Response Envelope
The response envelope is used to return data regarding a previous request message sent
to the server. The information in a successful request contains the following elements:

© 2003 SPI Dynamics, Inc. All Right Reserved. No reproduction or redistribution without written permission.

Page 2

http://www.xmethods.net/sd/2001/BabelFishService.wsdl

� The method called
� Return value type
� Return data

Note: For unsuccessful requests, refer to Overview of the Fault Response Message.

To make things a bit more clear, Figures 3 and 4 illustrate the server’s response to the
request depicted in Figures 1 and 2.

Figure 3: Simple SOAP Response Envelope

Figure 4: Simple SOAP Response over HTTP

© 2003 SPI Dynamics, Inc. All Right Reserved. No reproduction or redistribution without written permission.

Page 3

Overview of the Fault Response Message
The previous section demonstrated how an application interacts with a SOAP web
service, including the response generated under normal conditions. But what happens if
an error occurs on the server side? How can the client know that an error occurred?
What type of information does the server return to the user?

When an error occurs on the server side, the SOAP service returns an envelope type of
Fault, which may contain more specific information about the error. Figures 5 and 6
illustrate a Fault message returned by the BabelFish web service when it receives a
request with no data in any of the required parameters.

Figure 5: Simple SOAP Fault Envelope

© 2003 SPI Dynamics, Inc. All Right Reserved. No reproduction or redistribution without written permission.

Page 4

Figure 6: Simple SOAP Fault Envelope over HTTP

As we can see, the service gives us a quick description of what went wrong. We will see
later how we could benefit from services that could generate too much information.

A great way to experiment with various types of web services is by browsing through
the list provided by Xmethods at http://www.xmethods.com/.

Anatomy of a SOAP Web Service
Now that we have a better understanding of SOAP communication structure, we need to
know how to get the initial information, such as the various methods the server is
exposing and the method parameters and types. The following section describes one
technique for discovering the information required to access different web services
provided by a server.

Web Service Description Language
The Web Service Description Language (WSDL) describes, in a few words, the
structure of a specific service using XML-formatted data. The information provided
includes, but is not limited to, the following:

� Service name and location
� Methods name and argument type
� Return value and type
� Documentation about the service

© 2003 SPI Dynamics, Inc. All Right Reserved. No reproduction or redistribution without written permission.

Page 5

http://www.xmethods.com/

Figures 7 and 8 show the WSDL definition of the BabelFishService we used to translate
the English word “Hi” to its French equivalent. Figure 7 displays the WSDL file and
Figure 8 illustrates how that definition is rendered in the SPI Dynamics SOAP Editor.

Figure 7: BabelFishService WSDL Definition in XML

© 2003 SPI Dynamics, Inc. All Right Reserved. No reproduction or redistribution without written permission.

Page 6

Figure 8: BabelFishService WSDL Graphical View

By obtaining a copy of the WSDL definition file for a specific web service, we are now
able to get a clear view of how we can interact with the web service and what type of
response data to expect. By reviewing the information we received about the BableFish
web service, we now know that the service has one method called BabelFish, the
method requires two parameters, and both parameters are of type string. In addition, we
can see that the return type of the method is a string.

© 2003 SPI Dynamics, Inc. All Right Reserved. No reproduction or redistribution without written permission.

Page 7

Attacking SOAP Web Services
Having described how to communicate with SOAP services and how to reveal the
structure of the services, we can now turn our attention to the service itself.

Test Application
The test application is a simple SOAP service written in C# and running under
Microsoft Information Server 5.0 with ASP.NET support. The test web service
simulates a simple product inventory system with provider information and discount
given by the provider. The service exposes the following methods to the users:

� GetProducts
� GetProductInformationByID
� GetProductInformationByName
� GetProviderInfo

For a complete WSDL definition of the web service, refer to Appendix C: Test
application WSDL. By reviewing the WSDL, we see that a user ID and password
parameter is required for every call. For our testing, the user ID is 551-457-4487 and the
password is 123456.

Parameter Tampering
SQL injection and cross-site scripting are two types of attacks that use parameter
tampering. Refer to Appendix B: Further Reading for more information about these
types of attacks.

Standard web applications receive client parameters as string data. Before performing
any functions with this input, the application must validate the string and, if necessary,
sanitize it. Programs that do not rigorously examine input strings are extremely
susceptible to parameter tampering. For example, if an attacker adds a single quotation
mark to the input string and the application accepts the input and passes the user-
supplied data unsanitized to a SQL statement, then the application is susceptible to SQL
injection.

Web services, however, require somewhat less rigor because the web service methods
specify the data type for each of their arguments. For example, if an attacker tries to
perform SQL injection on a web services method that expects an integer as an
argument, adding a single quotation mark will cause the SOAP implementation to
return a client error and the data will not reach the actual method called.

© 2003 SPI Dynamics, Inc. All Right Reserved. No reproduction or redistribution without written permission.

Page 8

Testing for Input Validation
The first step in a parameter tampering attack is to determine if the web service
application is performing any type of input validation. To generate a good set of inputs
to use for testing, look at the WSDL document. In addition to specifying the data type
of each parameter, it will often contain comments about the purpose of those
parameters. The application’s name or ID may give us some information about the
products. We can also deduce that the service will get its information from a data
repository (a database or LDAP server), so the service might well be vulnerable to SQL
or LDAP injection.

Now that we have more information about the server and parameters, let’s send to the
GetProductInformationByName method a few characters that are known to be in most
input validation code and see how the server responds. This is a good method to use for
initial testing because its name argument is a string, which is more susceptible to
parameter injection. Figures 9 through 11 demonstrate how the server reacts to some of
the characters.

Figure 9: Sending Single-Quote Test for Input Validation on
GetProductInformationByName

© 2003 SPI Dynamics, Inc. All Right Reserved. No reproduction or redistribution without written permission.

Page 9

Figure 10: Response from Server

It is clear that the methods do not perform even the simplest input validation on the
productName argument. We can also confirm, by looking at the faultstring returned by the
server, that the information accessed by the web service is stored in a backend database.

A closer look at the faultstring reveals more information about some of the internal
processing the web service performs and where the problem occurs. Let’s review the
faultstring the server returned.

GetProductInformationByName Test Faultstring Analysis
The faultstring is a representation of the exception thrown by one of the controls used
by the web service. To trace the exception and see how the application handled our
data, we must read the faultstring from bottom to top. As illustrated in Figure 10, the
last line shows the web service method that we called represented by
ProductInfo.ProducInfo.GetProductInformationByName(String name, String uid, String
password). Then we can see that it uses an internal object called

© 2003 SPI Dynamics, Inc. All Right Reserved. No reproduction or redistribution without written permission.

Page 10

ProductDBAccess.GetProductInformation(String productName, String uid, String password)
that seems to be handling the communication with the backend database. If we trace the
calls up to the first line, we see where the error happened; it indicated that there is a
syntax error in the SQL query sent to the database. The syntax error line,
System.Data.OleDb.OleDbException: Syntax error (missing operator) in query expression
'productname like ''' and providerid = '551-457-4487'' also tells us that the internal query used
the SQL LIKE statement and we can actually see the single quotation mark (‘) we sent
(refer to http://www.w3schools.com/sql/sql_where.asp for more information about the
LIKE statement). We can also see some of the names used and how the application
constructed the query using the value we provided. Let’s test our assumptions by
sending something that is likely to return at least one record. Since the web service is
using LIKE, we will send the % wildcard character and see if the application accepts it.

Figure 11: Sending % to Test Assumptions on the GetProductInformationByName
Method

© 2003 SPI Dynamics, Inc. All Right Reserved. No reproduction or redistribution without written permission.

Page 11

http://www.w3schools.com/sql/sql_where.asp

Figure 12: Response from Server

As expected, the server returned a record. Another interesting observation is that we
received only one record instead of all of them. Logically, in response to the % wildcard
character, the internal query should have returned all product information. However, if
we take another look at the WSDL definition for this web service (refer to Appendix C:
Test Application WSDL), we see the definition for the GetProductInformationByName
method clearly defines the return type as a string and not ArrayOfString. This is another
area where SOAP type enforcement imposes some level of sanity checking and proper
coding on the application’s data input and output.

Now we know that the name parameter of the GetProductInformationByName method,
because of the LIKE statement, will possibly allow us to see more information then we
are supposed to see but that doesn’t mean we can. The web service is validating the
credentials provided and technically will not display products that are not related to the
providerid specified. We need to find a way to get more product information out of the
application by using the only credentials we have. Let’s take a closer look at how the
application is performing authentication for the GetProductInformationByName method.
We will use the same testing technique we used for the name argument and send a
single quotation mark to see if it breaks the SQL statement used for authentication
and/or product information retrieval.

© 2003 SPI Dynamics, Inc. All Right Reserved. No reproduction or redistribution without written permission.

Page 12

Figure 13: Sending Single-Quote Test for Authentication Input Validation

Figure 14: Response from Server

© 2003 SPI Dynamics, Inc. All Right Reserved. No reproduction or redistribution without written permission.

Page 13

In this test scenario, the faultstring we receive from the server tells us exactly how the
application uses the uid and password to validate our credentials. It passes the
authentication data to the ProductInfo.ProductDBAccess.VerifyAuthentication(String uid,
String password) method. It does not perform sanity checking on the data because the
single quotation mark we appended to the uid parameter was directly used in the SQL
query and generated a syntax error. The faultstring also gives us most of the query used
for validating credentials by returning userid = ‘551-457-4487’’ and password = ‘1123456’ in
the syntax error. From the query portion returned by the server, we can quickly generate
a valid SQL injection to bypass the password verification. We simply force a true
condition after the password value.

The newly formatted SQL should internally look like select something from sometable
where userid = ‘551-457-4487’ and password = somevalue or true. The injection value for
our test will be ' or 1=1 or password = ' ; this should force the web service to generate a
query that will look like select something from sometable where userid = ‘551-457-4487’ and
password = ‘’ or 1=1 or password = ‘’.

Figure 15: Bypassing Authentication on GetProductInformationByName

© 2003 SPI Dynamics, Inc. All Right Reserved. No reproduction or redistribution without written permission.

Page 14

Figure 16: Response from Server

It works! We received data from the server without providing a valid password. With
that knowledge in mind, let’s try to steal a password from other providers and see what
discount rate they give. To get that information, we need to make calls to the
GetProviderInfo(String uid, String password) method and see if we can bypass the password
section just like we did on the GetProductInformationByName method. Let’s send the
same injection string and see what results we get from the server.

Figure 17 Bypassing Authentication on GetProviderInfo

© 2003 SPI Dynamics, Inc. All Right Reserved. No reproduction or redistribution without written permission.

Page 15

Figure 18: Response from Server

The same injection worked fine. We received our user information, including our
password and the discount we give to the company. What could be interesting is to get
the same information from another uid, either one we might know already or one we
could acquire through brute force by forcing a LIKE statement on the uid. For the sake
of brevity, let’s say we have prior knowledge that there is a uid 787-457-1154. Now our
injection would look something like select something from sometable where uid = ‘’or ‘’ = ‘’
and password = ‘’ or uid =’787-457-1154’. To force that SQL query format, we will inject '
or ''=' in the uid parameter and ' or providerid = '787-457-1154 in the password parameter.

© 2003 SPI Dynamics, Inc. All Right Reserved. No reproduction or redistribution without written permission.

Page 16

Figure 19: Getting Other Provider Information

Figure 20: Response from Server

Everything worked as expected and we managed to get another provider information
including the password and the discount he gives. There are many more examples that
could be created with this application. Anyone interested in learning more about other
types of injections should visit the SPI Labs white paper pages at
http://www.spidynamics.com/whitepapers.html.

Prevention
Protecting web services requires the collaboration of developers, system administrators,
and management. Though effective at reducing the risk of such an attack, the
approaches discussed in the next section are not complete solutions. It is best to
remember that web application security must be a continually evolving process. As

© 2003 SPI Dynamics, Inc. All Right Reserved. No reproduction or redistribution without written permission.

Page 17

http://www.spidynamics.com/whitepapers.html

hackers change their methodologies, so must those who want to implement a secure
Web application.

Incoming Data Validation
All client-supplied data must be cleansed of any characters or strings that could possibly
be used maliciously. Under SOAP, the implementation and type checking performs
most of the standard data verification, but that doesn’t mean that data should not be
verified. In fact, validating string type arguments and stripping quotes or putting
backslashes in front of them is nowhere near enough. The best way to filter data is to
use a default-deny rule and include only the type of content you want to accept and to
perform logical checking on the data received.

Outgoing Data Validation
The application should also validate the data that is ready to be returned to the user.
You can use SOAP type checking to make sure that you return only a specific amount
of data, but you still need to perform logical validation and ensure that the data
contained in the objects that you return is clean. The application should validate that the
format is valid and should use generic error reporting instead of the default that may
give too much information to the user.

© 2003 SPI Dynamics, Inc. All Right Reserved. No reproduction or redistribution without written permission.

Page 18

Appendix A: References
For more information on web services, refer to these additional resources.

http://www.w3.org/TR/SOAP/

Web Services Description Language (WSDL) 1.1

http://www.w3.org/TR/wsdl

Appendix B: Further Reading
SQL Injection: Are You Web Applications Vulnerable?
http://www.spidynamics.com/whitepapers/WhitepaperSQLInjection.pdf

LDAP Injection: Are Your Web Applications Vulnerable?
http://www.spidynamics.com/whitepapers/LDAPinjection.pdf

Complete Web Application Security: Phase1-Building Web Application Security into
Your Development Process.
http://www.spidynamics.com/whitepapers/Webapp_Dev_Process.pdf

Appendix C: Test Application WSDL
Download the application WSDL from here.

Appendix D: Test Application Source Code
Download the test application source code from here.

© 2003 SPI Dynamics, Inc. All Right Reserved. No reproduction or redistribution without written permission.

Page 19

http://www.w3.org/TR/SOAP/
http://www.w3.org/TR/wsdl
http://www.spidynamics.com/whitepapers/WhitepaperSQLInjection.pdf
http://www.spidynamics.com/whitepapers/LDAPinjection.pdf
http://www.spidynamics.com/whitepapers/Webapp_Dev_Process.pdf
http://www.spidynamics.com/whitepapers/ProductInfo.wsdl
http://www.spidynamics.com/whitepapers/ProductInfo-src.zip

The Business Case for Application Security
Whether a security breach is made public or confined internally, the fact that a hacker
has accessed your sensitive data should be a huge concern to your company, your
shareholders and, most importantly, your customers. SPI Dynamics has found that the
majority of companies that are vigilant and proactive in their approach to application
security are better protected. In the long run, these companies enjoy a higher return on
investment for their e-business ventures.

About SPI Labs
SPI Labs is the dedicated application security research and testing team of SPI
Dynamics. Composed of some of the industry’s top security experts, SPI Labs is
focused specifically on researching security vulnerabilities at the web application layer.
The SPI Labs mission is to provide objective research to the security community and all
organizations concerned with their security practices.

SPI Dynamics uses direct research from SPI Labs to provide daily updates to
WebInspect, the leading Web application security assessment software. SPI Labs
engineers comply with the standards proposed by the Internet Engineering Task Force
(IETF) for responsible security vulnerability disclosure. SPI Labs policies and
procedures for disclosure are outlined on the SPI Dynamics web site at:
http://www.spidynamics.com/spilabs.html.

About SPI Dynamics
SPI Dynamics, the expert in web application security assessment, provides software and
services to help enterprises protect against the loss of confidential data through the web
application layer. The company’s flagship product line, WebInspect, assesses the
security of an organization’s applications and web services, the most vulnerable yet
least secure IT infrastructure component. Since its inception, SPI Dynamics has focused
exclusively on web application security. SPI Labs, the internal research group of SPI
Dynamics, is recognized as the industry’s foremost authority in this area.

Software developers, quality assurance professionals, corporate security auditors and
security practitioners use WebInspect products throughout the application lifecycle to
identify security vulnerabilities that would otherwise go undetected by traditional
measures. The security assurance provided by WebInspect helps Fortune 500
companies and organizations in regulated industries — including financial services,
health care and government — protect their sensitive data and comply with legal
mandates and regulations regarding privacy and information security.

SPI Dynamics is privately held with headquarters in Atlanta, Georgia.

© 2003 SPI Dynamics, Inc. All Right Reserved. No reproduction or redistribution without written permission.

Page 20

http://www.spidynamics.com/spilabs.html

About the WebInspect Product Line
The WebInspect product line ensures the security of your entire network with intuitive,
intelligent, and accurate processes that dynamically scan standard and proprietary web
applications to identify known and unidentified application vulnerabilities. WebInspect
products provide a new level of protection for your critical business information. With
WebInspect products, you find and correct vulnerabilities at their source, before
attackers can exploit them.

Whether you are an application developer, security auditor, QA professional or security
consultant, WebInspect provides the tools you need to ensure the security of your web
applications through a powerful combination of unique Adaptive-Agent™ technology
and SPI Dynamics’ industry-leading and continuously updated vulnerability database,
SecureBase™. Through Adaptive-Agent technology, you can quickly and accurately
assess the security of your web content, regardless of your environment. WebInspect
enables users to perform security assessments for any web application, including these
industry-leading application platforms:

� IBM WebSphere
� Macromedia ColdFusion
� Lotus Domino
� Oracle Application Server
� Macromedia JRun
� BEA Weblogic
� Jakarta Tomcat

About the Author
Sacha Faust is a senior research and development engineer at SPI Dynamics, where his
responsibilities include managing the SPI Labs team, researching new techniques for
Web auditing, conducting source code reviews to find vulnerabilities, and securing Web
applications. He can be contacted at sfaust@spidynamics.com.

Contact Information
SPI Dynamics Telephone: (678) 781-4800
115 Perimeter Center Place Fax: (678) 781-4850
Suite 270 Email: info@spidynamics.com
Atlanta, GA 30346 Web: www.spidynamics.com

© 2003 SPI Dynamics, Inc. All Right Reserved. No reproduction or redistribution without written permission.

Page 21

mailto:sfaust@spidynamics.com

	Introduction
	Background
	Limitations

	Understanding SOAP Communication
	Request Envelope
	Response Envelope
	Overview of the Fault Response Message

	Anatomy of a SOAP Web Service
	Web Service Description Language

	Attacking SOAP Web Services
	Test Application
	Parameter Tampering
	Testing for Input Validation
	GetProductInformationByName Test Faultstring Analysis

	Prevention
	Incoming Data Validation
	Outgoing Data Validation

	Appendix A: References
	Appendix B: Further Reading
	Appendix C: Test Application WSDL
	Appendix D: Test Application Source Code
	The Business Case for Application Security
	About SPI Labs
	About SPI Dynamics
	About the WebInspect Product Line
	About the Author
	Contact Information

