H
n“l“OOOO................OOOO»

88

Open source IS
d Vital step
In moving
software
engineering
from arcane art
to science.

IEEE SOFTWARE

Up from Alchemy

Eric S. Ilaymontl, Open Source Initiative

hree hundred years ago,
alchemy became chemistry.
Arcane art became science
when its practitioners aban-
doned secrecy to embrace
process transparency and
peer review. Today, software engineering is
undergoing a similar transition, moving from
closed to open source development. Only
when we complete this transition, adopting
open source development as a normal prac-
tice, can software development assume its
place as a mature engineering discipline.

Open source: A path to quality

Both evidence and theory confirm that
open source delivers better reliability, lower
costs, shorter development times, and a
higher quality of code (including better se-
curity). The Fuzz papers’ empirical results,
showing a substantially lower error rate in
open source Unix utilities relative to closed-
source equivalents, are well known (www.
cs.wisc.edu/~bart/fuzz/fuzz.html). Recently,
Damien Challet and Yann Le Du developed
a mathematical model of software develop-
ment that provides a formal, generative the-
ory to explain those results (http:/arxiv.org/
pdf/cond-mat/0306511).

But the truly powerful evidence for the su-
periority of open source development lives
not in academia but the real world. The
Linux operating system, the Apache Web

Published by the IEEE Computer Society

server, and the rest of the Internet’s open
source infrastructure have become so perva-
sive in recent years that it’s sometimes diffi-
cult to remember how preposterous their
story would have seemed before 1995-96.
Amateurs successfully challenging Micro-
soft’s operating-system monopoly and actu-
ally wresting leading-edge markets away
from them? A volunteer-run effort maintain-
ing the server that runs 60 percent of the
world’s Web sites? Absurd, but true.

Increasingly, too, customers are demand-
ing the assurance open source provides that
software they rely on is controlled by them
and can’t be arbitrarily modified or with-
drawn by a vendor decision that’s not in the
customers’ interest. Open source restores
balance to relationships in which vendors
have had the whip hand. It prevents rent-
seeking activities (meant to avoid competi-
tive or market pressure) and encourages the
growth of healthy and sustainable service-
for-revenue exchanges.

This isn’t to claim that open source de-
velopment is a final solution to the software
quality problem. As Fred Brooks famously
observed, there are no silver bullets. When
we learn better techniques for managing a
given level of software complexity, we tend
to pocket those gains by escalating com-
plexity to the point where we are again just

Continued on page 90

0740-7459/04/$20.00 © 2004 IEEE

H
1 <0.....Q......Q.............O.n“l“

David G. Messerschmitt, Uxiversity of California, Berkeley

oftware offers greater value
when it’s a single unfrag-
mented solution, it’s widely
used and technically so-
phisticated, and a great
many programmers depend
on it. For software meeting these criteria
(such as operating systems or program-
ming tools), open source software has
had notable successes. But most software
doesn’t fit this mold. Consider software
embedded in an airplane or telephone
switch or nuclear plant, where program-
mers have no access to the facilities needed
for testing and refinement; indeed, in situ
debugging can be life-threatening. Open
source doesn’t apply here.

More generally, many applications have
few programmers among their users (sup-
ply chain or customer relation manage-
ment are examples). Programmers have lit-
tle direct motivation to solve somebody
else’s problem, but financial incentives are
a good substitute. Nonprogrammer users
shouldn’t be testers and debuggers; they
need stable working solutions, not techni-
cal acumen.

Quality doesn’t mean bug-free

Open source software takes us back to
an ancient prebartering economic system
where everything is placed in and extracted
from a commons. This works in closed and

trusting communities, but nonprogrammer
users are the beggars roaming the com-
mons, helplessly dependent on it without
input or influence. In commercial software,
users are appropriately put squarely in the
driver’s seat through competitive choice
and as the origin of all wealth.

In applications, the emphasis is often
on user satisfaction and coherence to
processes and organizations (rather than
specifications or technical sophistication),
areas less appreciated by programmers.
“Defects” are typically misunderstandings
of user needs; identifying such defects and
their fixes benefits little from access to
source. Programmers often lack domain
knowledge and sufficient empathy for
naive users, so testers, product managers,
marketers, salespeople, and customer sup-
port play a crucial role in deeply under-
standing user needs and communicating
them to programmers. Most open source
software lacks usability from the perspec-
tive of naive users.

Applications often have a diversity of
uses and legitimate variations in needs that
evolve over time. Efficiently capturing
commonalities while accommodating vari-
ation and evolution is crucial to expanding
the application base. Open source can’t ac-
commodate this gracefully: the argument

Continued on page 90

January/February 2004

Open source
fails
organizational
and
nonprogrammer
users.

IEEE SOFTWARE

89

...>

at the edge of being able to cope. And
there are a few unusual edge cases in
which open source doesn’t make eco-
nomic sense.

But the overall trend is clear. Techni-
cally, closed source is sinking under the
weight of escalating error rates. Econom-
ically, even large firms are finding they
can’t afford to hire enough in-house
developers to meet the demands of to-
day’s huge project scales—such loads
must be spread across a wider base. This
is increasingly being done through both
formal consortia such as the Apache
Software Foundation and informal coop-
erative efforts regulated by open source
licensing. Resource pooling across corpo-
rate boundaries is moving from an op-
tion to an essential cost-control tool.

Who wins? Who loses?

The last five years have dispelled a lot
of the negative mythology that used to be
associated with open source develop-
ment. It used to be widely believed, for
example, that the process was unsustain-
able at scales above garage-project level

because open source software couldn’t
capture sufficient market returns to fund
development. Extreme forms of this argu-
ment claimed open source spelled dooms-
day for the livelihood of programmers.

Indeed, some people will lose out in
the change—mainly, software monopo-
lists and speculative investors. Open
source software businesses must be
service-centered rather than product-
centered; thus, as with other service busi-
nesses, scaling up returns just by pump-
ing in capital isn’t possible. There’s no
fast, lucrative exit for venture capitalists.
Tomorrow’s pure-play software house
will probably look more like a legal or
medical practice than like Microsoft or
Oracle. Proportionally more salaries will
be funded by companies for whom open
source software is part of a bundled
good (which, for example, is why com-
panies like IBM and Hewlett-Packard
are embracing the method).

But programmers’ fears were born of
economic ignorance. In fact, open source
has probably raised average program-
ming salaries for exactly the same rea-

‘.O......O......O...................

that users can modify the code to their
specific need places unreasonable de-
mands on technical proficiency and re-
sults in forking, fragmentation, and a
self-defeating, increasingly proprietary
code base. The motivations attributed
to individual open source programmers
don’t apply to user organizations,
which won’t and shouldn’t invest in de-
velopment without being rewarded
with differentiation from their competi-
tors; sharing source code fails this lit-
mus test.

We can capture commonality while
accommodating variation and evolu-

90 IEEE SOFTWARE

www.computer.org/software

tion. Acquired components support
variation through selection, configura-
tion, and system evolution by compo-
nent upgrade. Open interfaces allow
piecemeal upgrades, and open applica-
tion programming interfaces allow
sanctioned context-specific extensions
by users. User communities are estab-
lishing evolving open standards, a
process emphasizing user community
consensus rather than fun and chal-
lenge for programmers, and stability
and interoperability rather than rapid
technical innovation and change.
These techniques emphasize issues

sons that the wages of automobile de-
signers and mechanics go up when car
prices drop. When a bundled good be-
comes less expensive and more reward-
ing, customers put more money, rather
than less, into the most expensive bottle-
neck component.

Professional software engineers there-
fore have no reason to resist the trend to-
ward open source. Indeed, they have
every reason to embrace it, because one
of its effects is that programmers—the
people who do the work—get to take
back control of their art from people
who merely manage and market things.
Perhaps the most subversive thing about
open source development in the long
term is the revelation that throwing the
suits overboard actually works. @

Eric Raymond is cofounder and president of the Open
Source Initiafive, an educational organization that builds bridges
between the hacker community and business with the aim of
spreading the open source development method. Contact him at
esr@thyrsus.com or www.cath.org/~esr.

Unier

near and dear to users rather than to
programmers; unlike open source, they
are persistent in the face of funding va-
garies and technology fads and are con-
sistent with competing solutions. Their
emphasis on overall planning and user
community drivers are anathema to
open source proponents, although they
can be combined with open source (and
commercial) software in various ways.

The cost of quality

Open source can yield high-quality
code, but at what cost? Having hun-
dreds or thousands of programmers

pouring over the totality of source is
hardly productive, although this isn’t
evident with volunteer labor. This is
justifiable for some widely used infra-
structure, but the programming work-
force doesn’t have the spare capacity to
globalize this inefficiency.

Open source is incomplete as a soft-
ware creation process. Somebody has
to understand needs; design an archi-
tecture accommodating long-term evo-
lution; create a working prototype as a
starting point; provide a talented, cen-
tralized person or group to coordinate
and govern; and provide support,

training, and certification. These criti-
cal tasks hardly differ between open
source and traditional processes. If
programmers do all the coding and de-
bugging in their spare time, what will
they do on their paying jobs? Probably
these leftover tasks, which many will
find less interesting and challenging
than what they do now.

Commercial vendors make extra
margins on their successful software
products (given practically zero man-
ufacturing and distribution costs)
and use them to finance losers in a
product portfolio and to finance re-

search and risky sunk investments in
new products. In an all open source
industry, products would be replaced by
marginally profitable services, and re-
search and risk-taking would be gravely

damaged. @

David G. Messerschmitt is the Roger A. Strauch
Professor of electrical engineering and computer sciences af the
University of California, Berkeley, and coauthor of Software
Ecosystem: Understanding Technology and Industry (MIT Press,
2003). Contact him at messer@eecs.berkeley.edu.

Most of the objections in David's essay can be met with
the simple observation that nothing in open source develop-
ment stops users from paying programmers to get slick user
interfaces or anything else they want. His image of beggars
roaming the commons is touching but mistaken; these “beg-
gars” have fistfuls of florins to wave around, and program-
mers will be no slower than other kinds of skilled artisan to
notice this.

When users need to be in the driver’s seat, they can buy
that privilege quite directly by employing programmers to
improve the open source base on their behalf. The only op-
tion open source forecloses is that of cornering the results
for exclusive resale. Most users, most of the time, don't
care—they need software to solve business problems, not to
be in the software business themselves.

So, if you want “coherence to process and organization,”
pay for it. Open source doesn’t change this, it just peels
away overhead —all your money buys programmer time
rather than corner offices for some other firm's executives.
Because the programmers will spend less of their time im-
plementing checklist features for someone else’s require-
ments, they can spend more of it improving and innovating
with respect to yours.

3M discovered years ago that the central problem of in-
novation is not eliciting it but how not to smother it under
bureaucracy, turf wars, and process overhead. The fluidity,
low cost of experiments, and peer review process in open
source give it a huge and sustainable edge in fostering in-
novation.

Alchemy? If selling proprietary products in a competitive
market is the criterion, then all mature industries practice
alchemy. Eric confuses commerce with scholarship.

Eric’s examples, which fall within the scope of my first sen-
tence, do suffer winner-take-all effects, and thus open source
is an antidote to monopolistic behavior. It has major strengths
and weaknesses, but the market (not the profession) will be
the ultimate determinant, and success won't be uniform across
all types of software. Open source (and its cousins such as
open-access publication) aren’t subversive; they represent
healthy competition among methodologies. But why such an
invective against venture capitalists (a.k.a. speculators)2 VCs
are a needed antidote to stodginess and manipulation and
encourage unfettered innovation while actually paying pro-
grammers well.

Eric says that given unlimited resources and absent pesky
scheduling or stakeholder constraints, we can create defect-
free software. Without annoying users or managers injecting
themselves, programmers can have satisfying careers. This is
credible, but managers are necessary to allocate limited re-
sources, arbitrate among stakeholders, and meet aggressive
schedules. Actively incorporating users (and their representa-
tives) dramatically increases impact.

Other approaches have many of the same advantages
touted for open source. Brad Cox mirrors economists in ar-
guing eloquently that a market is the ultimate complexity
tamer. Buying components from suppliers achieves resource
sharing across companies without requiring technical acu-
men and without encouraging free-riders.

New methodologies such as open source, component soft-
ware, superdistribution, and Extreme Programming are wel-
come. Open source is surprising and successful and works
well for some purposes. It will play a significant role, but one
more limited than Eric asserts.

January/February 2004 |EEE SOFTWARE 91

	Index:
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index:
	INDEX:
	ind:

