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Recent Internet measurements have found pervasive evidence of
some surprising scaling properties. The two we focus on in this
paper are self-similar scaling in the burst patterns of Internet traffic
and, in some contexts, scale-free structure in the network’s inter-
connection topology. These findings have led to a number of
proposed models or ‘‘explanations’’ of such ‘‘emergent’’ phenom-
ena. Many of these explanations invoke concepts such as fractals,
chaos, or self-organized criticality, mainly because these concepts
are closely associated with scale invariance and power laws. We
examine these criticality-based explanations of self-similar scaling
behavior—of both traffic flows through the Internet and the
Internet’s topology—to see whether they indeed explain the
observed phenomena. To do so, we bring to bear a simple valida-
tion framework that aims at testing whether a proposed model is
merely evocative, in that it can reproduce the phenomenon of
interest but does not necessarily capture and incorporate the true
underlying cause, or indeed explanatory, in that it also captures the
causal mechanisms (why and how, in addition to what). We argue
that the framework can provide a basis for developing a useful,
consistent, and verifiable theory of large networks such as the
Internet. Applying the framework, we find that, whereas the
proposed criticality-based models are able to produce the observed
‘‘emergent’’ phenomena, they unfortunately fail as sound expla-
nations of why such scaling behavior arises in the Internet.

Today’s Internet is a prime example of a large-scale, highly
engineered, yet highly complex system. It is characterized by

an enormous degree of heterogeneity any way one looks and
continues to undergo significant changes over time. In terms of
size, by mid-2001, the Internet consisted of about 120 million
hosts, or endpoints, and more than 100,000 distinct networks,
totaling millions of routers and links connecting the hosts to the
routers and the routers to one another. These links differ widely
in speed (from slow modem connections to high-speed ‘‘back-
bone’’ links) as well as technology (e.g., wired, wireless, satellite
communication).

At the largest scale, the Internet is divided into Autonomous
Systems (ASs). Each AS is a collection of routers and links under
a single administrative domain. The global Internet currently
consists of several thousand separate ASs, interlinked to give
users the illusion of a single seamlessly connected network
capable of providing a universal data-delivery service. The
foundation of the ubiquitous connectivity is a datagram (packet)
delivery mechanism termed the Internet Protocol, or IP.

Despite all of the efforts devoted to understanding today’s
Internet, it is still surprising how often networking researchers
observe ‘‘emergent phenomena’’—measurement-driven discov-
eries that come as a complete surprise, cannot be explained or
predicted within the framework of the traditionally considered
mathematical models, and rely crucially on the large-scale nature
of the Internet, with little hope of encountering them when
considering small-scale IP networks.

One example of such a discovery was that measured traffic
rates on links in the Internet (i.e., number of packets or bytes that
traverse a given link per time unit) exhibit self-similar (or
‘‘fractal-like’’) behavior: a segment of the traffic rate process
measured at some time scale looks or behaves like an appropri-
ately scaled version of the traffic rate process measured over a
different time scale [see ref. 1 and followup studies (refs. 2 and
3)]. These empirical studies describe pertinent statistical char-
acteristics of the temporal dynamics of measured traffic rate
processes and provide ample evidence that these traces are
consistent with asymptotic second-order self-similarity or, equiv-
alently, long-range dependence (LRD); i.e., with autocorrela-
tions that decay like a power for sufficiently large lags. These
empirical findings were in stark contrast to what traditionally
used models assumed about actual Internet traffic, namely
exponentially fast decaying autocorrelations and, in turn, a
classical white noise behavior when measuring traffic rates over
large time scales.

A more recent example of an emergent phenomenon concerns
the Internet AS graph, an aspect of the Internet’s topology that
describes network connectivity at the level of individual ASs. A
recent empirical study (4) of the Internet’s AS topology reported
that the vertex degree distribution of snapshots of the measured
AS-connectivity graph follows a power law. This finding implies
that, whereas most of the ASs have a vertex degree of one or two,
the probability of encountering a few ASs that are highly
connected is significant. This data-driven observation is again in
sharp contrast to the traditionally considered types of topology
models (5, 6), which yield vertex degree distributions that decay
exponentially fast, essentially ruling out the occurrence of high-
degree vertices and giving most probability to ‘‘typical’’ node
degrees on the order of the average node degree of the graph.
In contrast, no such preferred or ‘‘typical’’ node degree can be
identified for power-law vertex degree distributions and, because
of this absence of a characteristic scale, the resulting structures
are termed scale-free networks.

The discovery of the self-similar scaling behavior of Internet
traffic over large time scales, the claim of scale-free character-
istics of the Internet topology at the AS level, as well as other
emergent phenomena such as the apparent intermittent nature
of Internet congestion (7), and the reported multifractal scaling
properties of Internet traffic over small time scales (8), have
triggered renewed interest in Internet modeling. The ensuing
research activities and resulting mathematical modeling efforts

This paper results from the Arthur M. Sackler Colloquium of the National Academy of
Sciences, ‘‘Self-Organized Complexity in the Physical, Biological, and Social Sciences,’’ held
March 23–24, 2001, at the Arnold and Mabel Beckman Center of the National Academies
of Science and Engineering in Irvine, CA.

Abbreviations: IP, Internet protocol; AS, autonomous system; TCP, transmission control
protocol; BGP, border gateway protocol; HTTP, hypertext transmission protocol; LRD,
long-range dependence; BA, Barabasi–Albert.

†To whom reprint requests should be addressed. E-mail: walter@research.att.com.

www.pnas.org�cgi�doi�10.1073�pnas.012583099 PNAS � February 19, 2002 � vol. 99 � suppl. 1 � 2573–2580



can be roughly separated into two different categories: evocative
or ‘‘descriptive’’ modeling vs. explanatory or ‘‘structural’’ mod-
eling. Evocative models can produce (or approximate) the
phenomena in question. Not only do explanatory models pro-
duce the phenomena, but also their applicability can be verified
by ‘‘closing the loop,’’ that is, by further measurements that test
for the presence of the causes that are proposed to explain the
phenomena of interest.

Evocative models are valuable in that they can shed light on
how certain phenomena might arise. They are typically used to
synthetically generate and statistically describe the phenomena
of interest, and they can suggest what further measurements to
take to test whether they are, in fact, explanatory. The ultimate
scientific challenge, however, consists of developing explanatory
models, because by demystifying emergent phenomena, these
models provide a solid foundation for a useful, consistent, and
verifiable theory for immensely complex systems such as today’s
Internet.

Our main purpose with this paper is to demonstrate that,
because of its highly engineered nature and the many different
facets of the available measurements, the Internet offers un-
precedented opportunities for successful explanatory modeling.
To this end, we provide a concrete framework for checking
whether a proposed Internet-related model is indeed explana-
tory. We apply this framework to a number of recently intro-
duced Internet traffic models (at the packet level) and Internet
topology models (at the AS level). In the process, we find that
the proposed statistical mechanics models of Internet traffic,
where self-similarity is a signature of criticality caused by a
phase-transition phenomenon (9, 10), and the recently consid-
ered scale-free graph models of the Internet topology, where
power-law vertex degree distributions arise as a signature of
self-organized criticality� (11, 12), are only evocative; they are not
explanatory.

In particular, as a result of not ‘‘closing the loop,’’ these models
tend to be too generic in nature. Because they ignore important
networking-specific details and fail to exploit the rich semantic
content of the available measurements, they can lead to incorrect
conclusions about the causes and origins of the emergent
phenomena at hand.

On the other hand, we also show that certain mathematical
models of Internet traffic, originally due to Mandelbrot (13) and
Cox (14), are genuinely explanatory. Because they can ‘‘close the
loop,’’ these models lead to a fundamental understanding of
emergent phenomena in the Internet context, thereby better
advancing our knowledge about how such a large-scale and
highly engineered man-made system works.

Modeling the Internet
Highly Engineered Yet Complex. Fundamental to the Internet’s
architecture is its design as a series of layers (15). Each layer
relies on the next lower layer to execute more primitive functions
and provides services to the next higher layer. Two hosts with the
same layering architecture communicate with one another by
having the corresponding layers in the two systems talk to one
another. The latter is achieved by means of formatted blocks of
data that obey a set of rules or conventions known as a protocol.

As briefly discussed earlier, the fundamental building block is
a packet of data, routing and delivery of which is provided by IP.
All information exchanges—whether a short e-mail message, a
large file transfer, or a complicated Web transaction—are
broken down into these basic building blocks. Each packet of
each connection is self-contained in the sense that its header

contains complete ‘‘addressing’’ information. The routers along
the packet’s path need only inspect the header of the packet to
determine its next-hop destination and forward it through the
network to its destination. Each packet is transmitted indepen-
dently from the other packets that have already been transmitted
or still await transmission; the routers do not keep track of which
packets belong to which active connections. Thus, a router can
forget about a packet as soon as it has been forwarded. This
feature buys robustness in the sense that the network can
transparently route packets around failed network components
(e.g., links, routers) without perturbing active connections—it
can continue to operate and successfully deliver data even in the
face of major equipment failure.

IP’s packet-oriented service buys efficiency and flexibility
over the traditional connection-oriented service used in tele-
phone networks. For example, instead of reserving a fixed
amount of bandwidth for the exclusive use of communication
between two end nodes (i.e., even if the two end nodes are silent,
the resources cannot be shared by a third party), in a packet-
oriented service network, each packet competes with all of the
others. If there happens to be little competing traffic along a
particular path, then a connection using the path can enjoy
essentially the entire capacity. On the other hand, if many
connections compete along the same path, each one of them will
receive a (perhaps unfair) portion of the capacity. Furthermore,
if packets arrive at a given point at too high a rate, such that they
exhaust the router’s finite buffer capacity for holding them
pending further transmission, then the router will discard or drop
the excess, a phenomenon termed congestion.

It is IP that provides the mechanism for unifying thousands of
different networks, operating under diverse administrations. IP’s
main task is to adequately implement all of the mechanisms
necessary to knit together divergent networking technologies
and administrative domains into a single virtual network (an
‘‘internet’’) to enable data communication between sending and
receiving hosts, irrespective of where in the network they are.
The abstraction of end-to-end connectivity provided by IP serves
as a layer that hides the underlying physical technologies. Further
abstractions (e.g., reliable delivery, access to Web URLs) are
then layered above IP. Thus, IP ensures a critical separation
between the constantly evolving physical network infrastructure
at lower levels and an ever-increasing user demand for more
abstract services and applications at higher levels.

The layer above IP is termed the transport layer, where the
most commonly used transmission control protocol (TCP) pro-
vides a number of additional services for end-to-end communi-
cation beyond those provided by IP: reliable delivery in the
presence of lost packets; a ‘‘byte stream’’ abstraction that hides
the underlying packetization; error recovery; f low control (en-
suring that the sender does not overrun the receiver’s ability to
accept new data); and congestion control. This last means that
TCP automatically adapts the rates at which data are transmitted
depending on whether congestion is detected. Its additive-
increase�multiplicative-decrease congestion control mechanism
gives rise to traffic that dynamically adapts to changing network-
ing conditions and does so on time scales of a few round-trip
times.** In large part, it is the finite link capacity that drives the
dynamics of protocols such as TCP and couples the different
simultaneous connections sharing the link in intricate ways,
introducing significant and complicated correlations across time,
among active connections, and between the different layers in
the protocol hierarchy.

Finally, the top layer in the Internet’s suite of protocols is the

�Following widespread (but perhaps overly general) practice, we use the term self-
organized criticality (SOC) to refer to highly interactive self-organized systems that display
power law behavior.

**In addition, TCP’s flow control leads to a ‘‘self-clocking’’ structure that also introduces
structure on the time scales of round-trip times, but one that is in this case separate from
current network conditions.

2574 � www.pnas.org�cgi�doi�10.1073�pnas.012583099 Willinger et al.



application layer. It contains a range of protocols that directly
serve the user; e.g., Telnet (remote log-in), file transfer protocol
(FTP), simple mail transfer protocol (SMTP) for e-mail, HTTP
(Web), and hundreds more. The applications also induce pat-
terns of communication (e.g., keystrokes for Telnet, a control
session coupled with multiple data transfer sessions for FTP,
transfers interrupted by ‘‘think time’’ for HTTP) that echo
downward into the dynamics of the underlying TCP and IP
layers.

We find complex structure elsewhere in the set of Internet
protocols, too. The routers internal to the network run distrib-
uted algorithms coordinated via routing protocols to discover
paths from any given router to any given network node. For our
purposes, the most interesting of these is the border gateway
protocol (BGP) that maintains connectivity between the ASs. It
is the glue that ties the ASs together, ensuring seamless com-
munication across AS boundaries. Being a variant of the class of
‘‘distance-vector’’ routing protocols, each BGP-speaking router
selects the ‘‘next hop’’ to use in forwarding packets to a given
destination based on paths to those destinations advertised by
the routers at the neighboring ASs. Routers exchange paths to
destinations to facilitate route selection based on policy: ASs
apply individual local policies when selecting their preferred
routes, usually based on the series of ASs that a given route
transits. This feature enables an administratively decentralized
Internet—using these policies, ASs can direct traffic to ASs with
which they have business relationships, where traditional net-
work routing protocols would have selected the shortest path.
However, this feature also introduces complex and subtle dy-
namics that can have global implications. Internet research is
just beginning to unravel some of these interactions and their
impact on the network’s overall traffic characteristics and sta-
bility (16, 17).

The Rich Semantic Content of Measurements. From a scientific
viewpoint, a crucial—and perhaps unique—facet of studying
Internet measurements is their very high semantic content.
Individual measurements, such as time-stamped IP packet head-
ers or BGP routing table dumps, contain a wealth of information,
both because the tools for measuring them often can capture
them with perfect fidelity and because the measurements include
the full structure of the layers relevant to network behavior. For
example, a traffic trace collected from a link within the Internet
is not merely a simple uni- or multivariate time series of packets
but manifests itself at the different networking layers in a variety
of different forms:

Y At the application layer, we can describe the traffic in terms
of session arrivals, session durations, and session sizes (volume
in bytes). Examples of sessions are remote login, file transfer,
e-mail delivery, or web surfing.

Y At the transport layer, the overall traffic can be characterized
in terms of TCP connection arrivals, durations, and sizes.
Other components of the traffic that use transport protocols
other than TCP have their own characterization. A single
session might correspond to a single transport connection
(e.g., remote login via Telnet, e-mail) or a group of either
consecutive or concurrent connections (Web surfing, file
transfer, Ssh remote login).

Y At the internetwork layer, traffic descriptions focus on either
individual IP packets, or on IP flows: their arrival patterns,
sizes, origination, and destination addresses. A single trans-
port connection might comprise a single IP flow, or a series of
flows separated by significant lulls, depending on both the
application driving the transport, and the network conditions
encountered. In addition, we can view network traffic as an
aggregate of IP packets generated by many host–host pairs.

Y At the link layer, traffic can be dealt with by treating the
individual packets as black boxes, i.e., by focusing on the mere
existence of a measured packet (time stamp, packet size) and
not on its ‘‘meaning’’ as revealed by its header.

Thus, as a result of the architecture of the Internet, actual
network traffic—i.e., the flow of packets across a link inside the
Internet—is the result of intertwined mechanisms, pronounced
and often unexpected modes, and complex interactions that exist
at and between the different networking layers.

Similar observations of rich semantics apply when trying to
infer Internet connectivity from BGP measurements. BGP
reachability information is obtained as a result of route updates
exchanged between AS border routers. These messages are
stored in the routers’ routing tables and provide information
about Internet connectivity at the AS level. However, because of
the prevalence of policy, it is in general very difficult to know
how complete or incomplete the AS-level connectivity informa-
tion is that can be derived from the routing tables of a relatively
small number of BGP routers. Additional difficulties arise
because of the highly dynamic nature of BGP, that is, the high
frequency with which changes in routing information occur.

Model Validation Framework. The ability to collect high-volume
and high-quality Internet-related measurements, and the subse-
quent discoveries of intriguing statistical characteristics in the
data, have led to much interest in Internet modeling and analysis.
Whereas the majority of research efforts have focused on
evocative models that succeed in synthetically generating, sta-
tistically describing, or formally reproducing the statistical char-
acteristics of interest, explanatory modeling remains rare. More-
over, when competing Internet-related models (evocative or
explanatory) have been proposed, the technical standards for
validating them against the full power of the available measured
data have generally been low or even nonexistent. That the same
phenomenon can give rise to a number of different highly
context-specific models motivates looking into scientific ap-
proaches for favoring one model over another.

We now formulate a framework for checking whether a
proposed Internet model is indeed explanatory or only evocative.
The proposed procedure for identifying an Internet-related
modeling approach as explanatory consists of the following three
steps:

(i) Discovery. Begin with a data-driven finding or ‘‘emergent’’
phenomenon that defies conventional modeling.

(ii) Construction. Devise a mathematical construction that
reproduces the ‘‘emergent’’ phenomenon of interest, is given in
terms of elementary networking concepts or mechanisms, and
reflects the highly engineered structure of the Internet.

(iii) Validation. Revisit the available measurements, extract
from them the data necessary to study the elementary network-
ing concepts or mechanisms that have been identified in step ii,
and check whether the proposed elementary concepts or mech-
anisms are indeed consistent with these data.

A critical feature of the proposed framework is that it ‘‘closes
the loop’’ between the discovery of a network-related empirical
phenomenon on the one hand and its proposed explanation in
terms of a structural model on the other, where the structural
model identifies a set of more elementary mechanisms as the
main cause of the phenomenon.†† This ‘‘closing of the loop’’ is
achieved by requiring that the proposed model conforms to
measured data not only at the level where the discovery was
originally made but also at the level where the more elementary
mechanisms are observable and verifiable.

††We are not claiming that ‘‘closing the loop’’ is a new concept; for example, much of
physics has been all about ‘‘closing the loop.’’ We simply argue here for applying the
‘‘closing the loop’’ concept in the context of Internet modeling, too.
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When conformance is verified, the model in question can be
expected to provide considerable new insights into the structure
and dynamics of networks such as the Internet. These, in turn,
can be exploited for various engineering purposes. On the other
hand, if the verification fails—that is, the proposed elementary
mechanisms turn out to be inconsistent with the measured
data—the proposed Internet model should be deemed evocative,
not explanatory (although it may still be explanatory when used
in a context other than the Internet).

Self-Similar Internet Traffic
Measurement-Driven Discovery. Fig. 1 (see also ref. 18) captures
the intuition behind the discovery that measured Internet traffic
exhibits self-similar scaling properties. The plots were generated
on the basis of an hour-long trace of Internet traffic collected
from a network link connecting a large corporation to the
Internet and consisting of IP packet headers timestamped to an
accuracy on the order of a few milliseconds.‡‡ The top plot in Fig.
1 shows a randomly selected subset of the trace on a time scale
of 100 msec; that is, each observation represents the number of
packets recorded on the link during a 100-msec interval for a
total of 6 sec. The second plot shows a time scale (x axis) that is
a factor of 10 larger and a y axis that has also been scaled up by
a factor of 10; now each observation represents the number of
packets per 1 sec, spanning 60 sec in total. The black-shaded
region indicates from where the plot in the row above was
chosen. Repeating this process, for the third plot, we have again
increased the scale in both x and y by a factor of 10 and, in the

final plot, by another factor of 6, such that now the plot spans the
entire hour of the collected trace.

Similar plots produced from a synthesized trace generated
from some traditionally assumed Internet traffic model tend to
‘‘smooth out’’ very quickly as the time scale increases, with hardly
any variability left on the coarser time scales. In contrast,
measured Internet traffic is highly bursty—as depicted in Fig.
1—and remains so even on quite coarse time scales. In fact, Fig.
1 suggests that measured Internet traffic is invariant under some
judicious scaling of time and space—a trademark of self-similar
or fractal-like objects.

More precisely, consider a second-order stationary and zero
mean stochastic process X � (Xk : k � 1) with autocorrelation
function (r(k), k � 0) and define the family of aggregated
processes (X(m) : m � 1), where for m � 1, 2, . . . , X(m) �
(X(m)(i) : i � 1) is given by X(m)(i) � (X(i�1)m�1 � � � � � Xim)�m.
Following ref. 14, X is called asymptotically second-order self-
similar (with self-similarity or Hurst parameter 0 � H � 1), if (i)
limm3� Var(m1�HX(m)) � �2, where 0 � �2 � � is a finite
positive constant, and (ii) limm3�r(m)(k) � ((k � 1)2H � 2k2H �
(k � 1)2H)�2, where r(m) � (r(m)(k), k � 0) denotes the auto-
correlation function of the aggregated process X(m). It is in this
sense that Internet traffic exhibits self-similar scaling properties,
and the form of the autocorrelation function appearing in the
above definition implies (and is implied by) the presence of
long-range correlations in Internet traffic. To this end, X is said
to exhibit LRD if for 1�2 � H � 1,

r�k� � c1k2H � 2, as k 3 �,

where c1 is a finite positive constant.§§ Note that the power law
decay of the autocorrelations of a long-range dependent process
implies ¥k |r(k)| � �. Even though the high-lag autocorrela-
tions are individually small, their cumulative effect is of impor-
tance and gives rise to a behavior of the underlying stochastic
process that is markedly different from that of the conventionally
considered short-range dependent processes. Here, a second-
order stationary stochastic process X � (Xk : k � 1, 2, . . . ) is
called short-range dependent (SRD) if for some 0 � � � 1,

r�k� � c2�k, as k 3 �,

where c2 is a finite positive constant. Thus, in contrast to LRD,
SRD is characterized by an autocorrelation function that decays
geometrically fast and satisfies ¥k |r(k)| � �; it is this difference
between the autocorrelations of an LRD and SRD process that
captures the surprising and distinctive difference between the
actually observed and commonly assumed temporal behavior of
Internet traffic.

The original finding of self-similar scaling behavior in mea-
sured network traffic was reported in ref. 1 and was based on an
extensive statistical analysis of traffic measurements from Eth-
ernet local-area networks (LAN) over a 4-year period from 1989
to 1993. A number of important followup studies provided
further evidence of the prevalence of self-similar traffic patterns
in measured traffic from wide-area networks (2, 3).

An important point to note, however, is that the above
definition of self-similarity allows for various shades of ‘‘bursti-
ness’’—from highly bursty all the way to very smooth—
depending on the relative magnitude of the overall mean, the
variability �2, and the Hurst parameter H. But the basic fact of
the presence of self-similarity has been an invariant (18) of
Internet traffic for the past 10 or so years, despite the sometimes
drastic changes the network has undergone during that period.

This ubiquity has intrigued traffic modelers and Internet
researchers alike. However, whereas the former typically re-

‡‡The measurements were gathered by J. Mogul in 1995 and are available from the Internet
Traffic Archive, http:��www.acm.org�sigcomm�ITA�. §§The symbol � means ‘‘behaves asymptotically as.’’

Fig. 1. Internet traffic viewed over four orders of magnitude.
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sponded with a series of increasingly refined evocative models of
Internet traffic—where the networking context in which the data
had been generated and collected in the first place has often
been disregarded—the latter were interested mainly in explan-
atory models, models that make sense in the networking context
and can be phrased and—more importantly –validated in terms
of elementary traffic-related entities.

A Criticality-Based Explanation. Numerous papers have appeared
during the last few years, mainly in the physics literature, arguing
that the self-similar scaling behavior of measured Internet traffic
can be explained simply as a phase-transition phenomenon from
statistical mechanics. To illustrate this claim, consider the re-
cently studied types of network traffic models (9, 10) that are not
atypical of the proposed statistical mechanics approach to
networking. The network topology is modeled by a square lattice
with the usual neighborhood relationship (i.e., four nearest
neighbors) and with periodic boundary conditions. A fraction �
of the nodes are assumed to be hosts that can generate and
receive packets, with the rest of the nodes serving as routers,
where packets can only be stored or forwarded. Each node is
assumed to maintain a queue with infinite buffer space. The local
interactions among the nodes can be of two types. In case the
node is a host, it injects (randomly) at some rate � new packets
into this network and does so independently from other hosts,
and only another host can serve as the final destination of a
packet. If the node is a router, it selects the packet at the front
of its queue and decides according to a fixed rule which link to
use to forward the packet to the next-hop router. For the time
evolution of the resulting network traffic model or interacting
particle system, a time step is defined to consist of one update
(according to the above mechanisms) at all nodes.

Through simulations, these models have been shown to exhibit
a phase transition as the packet injection rate parameter � varies
from 0 to 1. At the critical point, i.e., for � � �c, efficiency
measures such as the total number of delivered packets are
maximized. More importantly—as far as this paper is con-
cerned—at criticality, the time series describing the number of
packets in a given node’s queue show self-similar scaling behav-
ior in the sense of Fig. 1 and exhibit 1�f-type power spectra.
Accordingly, the argument has been made that the proposed
simple network traffic model identifies self-similarity of Internet
traffic as a phase-transition phenomenon; that is, the network
(hosts, routers) self-organizes to run at criticality, where it
achieves maximum information transfer and efficiency (10).
Moreover, because some of the key features of this network
traffic model are shared by highway traffic models (19), it is
claimed that there exist some deep connections between the
dynamics displayed by traffic on highways and computer net-
works close to criticality.

Although it is interesting and educational to know that
self-similarity can arise from such a simple process and can be
elegantly described as a phase-transition phenomenon from
statistical mechanics, the question we ask here is: Is self-
similarity in the Internet indeed the signature of this type of
criticality-based dynamic? That is, is the proposed statistical
mechanics model explanatory or simply evocative? To answer
this question, we expose the proposed model to the validation
framework outlined in Model Validation Framework. Although
step i applies trivially, step ii already reveals serious problems
with the basic model. For one, instead of exploiting the highly
engineered structure of the Internet, it ignores essentially all
aspects of the Internet architecture described in Highly Engi-
neered Yet Complex (e.g., no layering, no feedback, infinite
buffers). Furthermore, being void of any networking-specific
concept, the only mechanism to study is the packet injection rate
�, which roughly reflects link utilization. However, what really
identifies this phase-transition-based explanation as irrelevant as

far as the self-similar scaling behavior of Internet traffic is
concerned is step iii; that is, self-similar scaling has been
observed in networks with low, medium, or high loads, and any
notion of a ‘‘magical’’ load scenario where the network has to run
at critical rate �c to show self-similar traffic characteristics is
inconsistent with the measurements.

A Networking-Based Explanation. Next, consider the following
mathematical construction that fits in well with the layering
architecture of the Internet. At the application layer, sessions
(i.e., FTP, HTTP, Telnet) arrive at random (i.e., according to
some stochastic process) on the link and have a ‘‘lifetime’’ or
session length during which they exchange information. This
information exchange manifests itself at the IP layer, too, where
from the start until the end of a session, IP packets are
transmitted in some bursty fashion. Thus, at the IP layer, the
aggregate link traffic measured over some time period (e.g., 1 h)
is made up of the contributions of all of the sessions that, during
the period of interest, actively transmitted packets.

Mathematically, this construction, referred to as Cox’s con-
struction, is known to give rise to LRD or, equivalently, asymp-
totic second-order self-similarity, provided the session arrivals
follow a Poisson process and, more importantly, the distribution
F(x) of the session sizes T (i.e., number of packets or bytes per
session) are heavy-tailed with infinite variance (14). That is, as
x 3 �,

1 � F�x� � P	T � x
 � c3 x��,

where 1 � � � 2. The main ingredient of Cox’s construction (also
known as an immigration-death process or M�G�� queuing model)
is the heavy-tailedness of the session sizes, where the index � is
related to the self-similarity or Hurst parameter of the aggregate
traffic and satisfies the relation H � (3 � �)�2. Intuitively, the
heavy-tailedness property implies that there is no ‘‘typical’’ session
size, but instead the session sizes are highly variable (i.e., exhibit
infinite variance) and fluctuate over a wide range of scales, from
bytes to kilobytes to megabytes and beyond. It is this basic char-
acteristic at the application layer that causes the aggregate traffic at
the IP layer to exhibit self-similar scaling behavior. A closely related
earlier construction, originally due to Mandelbrot (13), relies on the
notion of a renewal-reward process but uses the same basic ingre-
dient of heavy-tailedness to explain the self-similarity property of
the aggregate link traffic (20).

To see how this networking-based explanation holds up
against our proposed model validation framework, observe that
Cox’s construction (or, equivalently, Mandelbrot’s) passes step ii
with ease—it clearly identifies the data sets that need to be
extracted from the available IP packet-header traces to check
step iii, namely session arrivals and session sizes.

For FTP and Telnet, the session structures have been shown
to be consistent with Cox’s construction (2). For HTTP sessions
(i.e., Web surfing), which are responsible for the bulk of today’s
Internet traffic, an individual session is typically made up of
many individual HTTP connections, and obtaining session in-
formation is generally more involved. Indirect evidence can be
obtained by analyzing the durations or sizes of individual HTTP
connections. For example, Fig. 2 plots P[T � x] vs. x on a log–log
scale for the empirical distribution of measured HTTP request
sizes for a 1996 24-hour measurement period, resulting in
226,386 observations. The linear relationship over more than
three orders of magnitude is strong evidence that the data are
consistent with the crucial heavy-tailedness assumption under-
lying Cox’s construction, and the slope values between 1.2 and
1.4 give rise to self-similar aggregate traffic with H-values
between 0.8 and 0.9. See refs. 3, 21, and 22 for further empirical
studies in support of the ubiquitous nature of heavy-tailedness in
measured Internet traffic.
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That this networking-based explanation of the self-similarity
phenomenon successfully passes our model validation frame-
work has far-reaching implications:

On the one hand, that we can explain self-similar scaling in
terms of the statistical properties of the individual sessions that
make up the aggregate link traffic suggests that the LRD nature
of network traffic is mainly caused by user�application charac-
teristics (i.e., Poisson arrivals of sessions, heavy-tailed session
sizes as a result of transmitting heavy-tailed files, or Web
documents). This in turn reveals that self-similarity has little to
do with network-specific aspects such as the protocol-related
mechanisms that determine the actual f low of packets as they
traverse the Internet.¶¶ Consequently, self-similarity is likely to
remain with us [assuming the way humans tend to organize
information does not change drastically (23)].

On the other hand, the fact that LRD leaves the smaller
time-scale behavior essentially unspecified has in turn motivated
researchers to focus investigations into the fine-grained structure
of network traffic. Here, the goal is to relate the observed
complex and highly time-localized traffic patterns to the most
important features of the common protocols (8).

Scale-Free Internet Topology
Measurement-Driven Discovery. As mentioned in Highly Engineered
Yet Complex, border routers exchange BGP route updates to
propagate reachability information. This reachability informa-
tion is stored in routing tables in each of the BGP routers.
Starting in November 1997, the National Laboratory for Applied
Network Research (NLANR) has collected BGP routing tables
once per day from the route server route-views.oregon-ix.net,
whose sole purpose is to connect to several operational routers
and obtain their routing tables. After processing these routing
tables, NLANR provides, among other things, daily ‘‘AS con-
nectivity maps’’ that have been used to infer and reproduce
snapshots of the Internet AS graph.��

Relying on three snapshots of such BGP-derived AS maps
(November 1997, April 1998, and December 1998), one of the
surprising findings, originally reported in ref. 4, concerns the
vertex degree distribution of the resulting AS graphs, namely the

observation that fd, the number of nodes with outdegree d,
follows a power-law. That is, fd � d��, where the symbol � means
‘‘proportional to.’’ We can equivalently express the relationship
in terms of the complementary cumulative distribution function,
1 � Fd�1 � ¥i�1

i�d fi (d � 1, 2, . . .). In this case, we have 1 � Fd
� d�(��1).

For each of three snapshots (see Fig. 3), we find �2.1.
Intuitively, the significance of this discovery is that the vertex
degrees observed in the Internet AS graph are highly variable.
In fact, such highly variable vertex degrees have been unheard of
in the context of the traditional and well studied Erdös–
Rényi-type random graph models (24) or the more hierarchical
graph structures that have been proposed as realistic topology
models in the networking literature (5, 6). In both of these cases,
the vertex degree distribution tends to be sharply concentrated
around some ‘‘typical’’ node degree (e.g., the mean of the
distribution), with essentially negligible probability for encoun-
tering vertex degrees that deviate by, say, more than one order
of magnitude from the mean. Because of the absence of any such
‘‘typical’’ node degrees in graphs that exhibit power-law vertex
degree distributions, these power-law graphs are also called
scale-free graphs.

The Barabasi–Albert Model. Several recent papers in the physics
and complex systems literature have attempted to uncover the
mechanisms that cause graphs to be scale-free. Among these
efforts, the papers by Barabasi, Albert, and colleagues (11, 12)
have attracted the most attention in the networking community,
as their authors propose a very appealing construction of
network topologies [henceforth the Barabasi–Albert (BA) con-
struction or model] that is claimed to explain the observed
scale-free nature of the Internet’s AS graph. Inspired by the
concept of self-organization, models resulting from the BA
construction explain and reproduce a number of the empirically
observed power-law relationships reported in ref. 4. The models
rely on three generic mechanisms to drive the evolution of such
graph structures over time: incremental growth, preferential
connectivity, and rewiring. Incremental growth follows from the
observation that most networks develop over time by adding new
nodes and new links to the existing graph structure. Preferential
connectivity expresses the frequently encountered phenomenon
that there is higher probability for a new or existing node to
connect or reconnect to a node that already has a large number
of links (i.e., high-vertex degree) than there is to (re)connect to
a low-degree vertex. More formally, in the case of the prefer-

¶¶We hasten to note, however, that without TCP, or some other form of congestion control,
the highly variable session workloads are capable of creating aggregate link traffic that
would be very different from what we observe in today’s Internet.

��It is important to note, however, that because of BGP-specific features such as address
aggregation and policy routing, the NLANR-generated AS connectivity maps may provide
a very incomplete picture of the actual AS connectivity in the Internet. We ignore in the
following this largely unsolved problem, but resolving it is an area of active research.

Fig. 2. Log–log plot of 1 � F(x) vs. x for HTTP connection sizes.
Fig. 3. Log–log plot of 1 � Fd vs. d for the vertex degree distributions Fd for
three different BGP-derived AS map snapshots.
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ential connectivity mechanism underlying the BA model, when
a new AS joins the network, the probability of the new node to
connect to each existing node (henceforth, ‘‘target node’’ or
‘‘peer’’) is given by ki�¥kj, where ki is the vertex degree of the
target node, and ¥kj is the sum of the vertex degrees of all nodes
in the graph before the addition of the new node. Finally,
rewiring allows for some additional f lexibility in the formation
of networks by removing links connected to certain nodes and
replacing them by new links in what effectively amounts to a local
reshuffling.

Constructing a graph according to these elementary mecha-
nisms, the authors of refs. 11 and 12 showed that the resulting
graph attains a steady state, where, for example, the distribution
of the node degree—after reaching steady-state—follows a
power law with an exponent that is a function of the input
parameters. Given the appeal and simplicity of the BA model,
the question we ask here is again: Is the scale-free nature of AS
graphs in the Internet indeed a signature of self-organized
criticality? That is, is the BA model explanatory or simply
evocative?

To pursue this question, note that the BA model is an ideal test
case for the model validation framework proposed in Model
Validation Framework. For one, the construction is explicit, relies
on some elementary concepts (i.e., incremental growth, prefer-
ential connectivity, and rewiring), and reproduces the emergent
phenomenon at hand. Thus, to test whether the BA model is
explanatory or evocative, the remaining step is to ‘‘close the
loop’’—validating the elementary concepts against AS-level
measurements.

Gathering these AS-level measurements takes considerable
care, as we need to ensure they form a consistent BGP-based
view of the Internet’s AS connectivity. Using such a set of
measurements spanning November 1998 through November
2000, we first extract information about basic events associated
with a graph structure that grows over time (e.g., node birth,
node death, link birth, link death). Accounting for the dead ASs
and links, the BGP-derived Internet AS graph can be shown to
be indeed consistent with the incremental growth condition
assumed by the BA model.

However, when checking how new ASs connect to the
existing AS graph, Fig. 4 illustrates a distinctly different
mechanism at work than that predicted—the preferential
connectivity assumption fails to hold, as follows. Starting with
the AS map of November 1998, consider the next AS (node u)
that joins the network. Node u joins the network with initial
vertex degree mu. Before we actually let node u join the
network, we simulate the addition of node u with target AS(s)
selected by sampling from the linear preferential model. We
record the vertex degrees of the mu target ASs so chosen and
label them ki

û, 1 	 i 	 mu. Next we actually add node u to the
network, connect it to those target ASs it actually connected
to in the real Internet, and record the vertex degrees of those
target ASs, labeling them ki

u, 1 	 i 	 mu. We repeat the above
process for the 1,000 new nodes added to the Internet between
November 1998 and May 1999. The top plot of Fig. 4 shows the
ki

u’s of the 1,000 nodes, and the bottom plot depicts the
corresponding ki

u’s.^ Clearly, the preferential connectivity as-
sumption underlying the BA construction is not consistent
with the Internet’s actual AS connectivity: in the real Internet
(top plot), new ASs have a much stronger preference to
connect to high vertex degree ASs and a significantly smaller
preference to peer with low vertex degree ASs than predicted
by the linear preferential model.

Finally, we check the validity of the rewiring concept. This
third part of the BA construction is crucial for making the
power-law exponent a function of the input parameters of the
model. However, the data provide strong empirical evidence

(not shown here) that rewiring may not at all be a significant
factor in the actual time-evolution of the Internet topology at the
AS level.

In summary, exposing the proposed modeling approach to a
validation framework that requires ‘‘closing the loop’’ reveals
that the original BA model fails to be a genuinely explanatory
model. As a result, findings about the behavior of Internet-
related connectivity that rely on assumptions of the BA model
that are not consistent with available measurements have to be
very cautiously assessed (12). Moreover, the failure of the
original BA model to ‘‘close the loop’’ motivates pursuing new
approaches for modeling the time evolution of Internet-related
topologies to demystify emergent phenomena such as scale-
free AS graphs and to lead to a deeper understanding of how
an administratively decentralized Internet evolves over time.
On the one hand, a number of such new approaches can be
expected to focus on more highly parameterized BA-type
models that will likely result in an improved fit with the
dynamical data. However, such approaches would still seek to
explain the scale-free phenomenon in terms of the detailed
dynamics of network growth. On the other hand, an alternative
approach would be to ignore the growth dynamics altogether
and instead explain the scale-free nature of the Internet
topology at the AS level by linking the degree distribution to,
for example, the underlying AS size distribution, which also
appears to exhibit high variability, irrespective of how ‘‘size’’
is measured (25). This latter approach would be similar to how
the Cox model explains the self-similar nature of Internet
traffic by linking it to a ubiquitous, well-documented, but

Fig. 4. New ASs target vertex degree(s) in the Internet (Upper) and according
to the BA model (Lower).
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largely unexplained high-variability phenomenon (i.e., heavy-
tailed distribution of connection sizes).

Conclusion
We argue in this paper that, because of its highly engineered
nature and the highly structured networking-specific semantic
context of the available measurements, the Internet is an exam-
ple of a large-scale complex system that offers unique opportu-
nities for successfully distinguishing between two classes of
models: evocative and explanatory. Only the latter can provide
a sound scientific basis for the origins of such emergent phe-
nomena as the self-similar dynamic of Internet traffic or the
scale-free nature of the Internet AS graph.

To this end, we provide a concrete framework for checking
whether a proposed Internet-related model is explanatory or
simply evocative and illustrate its applicability to Internet mod-
eling with a number of examples. In particular, we examine a
number of recently proposed dynamical models of Internet
traffic and Internet topology at the AS level that explain the
entirely unexpected scaling behavior in terms of critical phe-
nomena. In the process, we offer conclusive evidence that even
though the models produce the self-similar scaling phenomena
of interest, they do not explain why or how the observed

phenomena arise in the Internet. Some of these criticality-based
explanations can still be put to good use, however. For one, by
teaching us how certain emergent phenomena might arise, they
can serve as simple ‘‘null hypothesis’’ models to compare with.
Moreover, they often suggest what further measurements to take
for testing whether they are indeed evocative, and in this sense,
whether they can lead to an improved understanding of the
Internet.

To contrast, we also show that a class of mathematical models,
originally due Cox (14) and Mandelbrot (13), readily passes our
model validation framework. These models explain why and how
Internet traffic exhibits self-similar scaling behavior and provide
novel insights into (and new questions about) the dynamics of
actual Internet traffic. In short, aiming for explanatory Internet
models that successfully ‘‘close the loop’’ in the sense of Model
Validation Framework calls for novel approaches that explicitly
account for systems with such nongeneric, specialized, and highly
structured architectures as the Internet and which are optimized
(or suboptimized) through explicit design (26). When successful,
these approaches can be expected to significantly advance our
understanding of large-scale complex systems such as the Inter-
net, where engineering design plays a central role and cannot
simply be abstracted away.
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