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Abstract

We present a cognitive model, based on the mathematical theory of point processes, which
extends the results of two studies by Johansen (Physica A 276 (2000) 338; Physica A 296 (2001)
539) on download relaxation dynamics. Responses from subjects are considered as single events,
which are received from original listeners or readers and from a network of social contacts,
through which a message may propagate further. We collected data on the number of daily visits
at our web site after a radio interview with the second author, in which the name of the web
site was mentioned. A model based on an exponential hit time distribution and a homogeneous
point process for regular visitors 2ts our data and Johansen’s very well and is superior to both
the power law and the logarithmic function. The 2ts suggest that hit data from di5erent sources
share the same cognitive mechanism, which are controlled merely by the encoding and retrieval
of the target information memorised.
c© 2003 Elsevier B.V. All rights reserved.
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1. Introduction

The world-wide-web (WWW) provides one of the most e=cient methods for retriev-
ing information. However, statistics about the dynamics of information ;ow through
the web, and its interaction with other types of media, still form a largely unexplored

∗ Corresponding author. Tel.: +31-20-525-6807; fax: +31-20-639-1656.
E-mail address: achessa@fmg.uva.nl (A.G. Chessa).

0378-4371/$ - see front matter c© 2003 Elsevier B.V. All rights reserved.
doi:10.1016/j.physa.2003.10.037

mailto:achessa@fmg.uva.nl


542 A.G. Chessa, J.M.J. Murre / Physica A 333 (2004) 541–552

2eld of research. Two recent papers published data about the response of a population
on the WWW to the release of new information and, in particular, about the evolu-
tion of this response over time since the date of release [1,2]. In these two studies,
the authors quanti2ed the number of paper downloads from a website since the time
of appearance of two interviews with the authors, in which the website was men-
tioned. This resulted in two data sets of the number of downloads as a function of
time, the course of which was reported during periods of 70 and 100 days since the
interviews.
In their analysis, the authors argued that the data were 2tted reasonably well by

a power law [1] and a logarithmic function [2]. Both these functions contain three
parameters, which describe (1) the size of the Internet population that was interested
in an interview, (2) the decline rate of paper downloads and (3) a ‘background rate’
that depends on the ease of 2nding the web page and the general interest of the
subjects posted on the page. One of the future challenges posed by the authors is the
“rationalisation” of the functions 2tted. The process underlying such functions should
include factors like the dynamics of information, rumour spreading and psychological
decision. The latter is in fact the 2nal stage of a memory process that starts with
the initial encoding of information in the brain, then proceeds with the storage (that
determines the forgetting rate) and 2nally with retrieval and recall. Final recall will
depend on the encoding and storage characteristics that are at the disposal of ‘web
surfers’ for retrieving and recalling the essential information, for example, its web
address (URL), and on the e5ectiveness of the cue. The authors of the two papers do
not make concrete attempts to formalise these processes, but hint at several possible
stochastic models.
Our Memory Chain Model o5ers a comprehensive though concise formalisation of

each of the above-mentioned four stages of memory [3,4]. The model is based on the
theory of point processes [5,6], in which the ‘points’ of the process re;ect ‘copies’,
‘representations’ or ‘features’ of a memorised item. Memory representations are gen-
erated after the presentation of an item, which may be transferred to one or more
‘memory stores’. These transfer or induction processes between stores characterise the
underlying neurobiological processes that are responsible for the formation of a wide
spectrum of short-term to long-term memories. The corresponding processes are active
on time scales that range from milliseconds to tens of years. Beside the neurobiological
plausibility, the Memory Chain Model o5ers a uni2ed theory for di5erent quantitative
measures of learning and forgetting that have been introduced in the psychological
literature over the past 100 years [7].
The objective of this paper is to apply the Memory Chain Model to WWW download

statistics. We will apply our model both to the previously published data and to a new
data set regarding the number of daily visits at our web site measured from the time of
a radio interview in which the web site was mentioned. This data set will be described
in the fourth section. In Section 2 we will give a short description of the Memory
Chain Model. In Section 3 we will derive expressions for the number of Internet hits
from this model that are based on responses from subjects who hear or read an inter-
view and subsequently memorise the target information in the interview. In Section 4
we will 2t the expected number of hits derived from the Memory Chain Model to
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our data set. We will also 2t this model to the previously cited data, which we will
compare to the 2ts obtained with the power law and the logarithmic function applied
in the two studies [1,2]. In Section 5 we will extend the Memory Chain Model with
a component that describes information ;ow through a network of social contacts that
may receive a message from the subjects that 2rst heard or read an interview (the
cognitive component). We will also discuss some more complex examples of Internet
hits to which the model applies.

2. The Memory Chain Model

The mathematical basis of the Memory Chain Model is the theory of point processes
[5,6]. Point processes are de2ned in similar terms as random variables (a measurable
mapping from a probability space), but the ‘outcome space’, which is the set of real
numbers in the case of random variables, has a more complex structure through the in-
volvement of a phase or state space. Such a space may refer to spatio-temporal domains
in practice, which can be represented by (a subset of) Euclidean space. The outcome
space of a point process is a space of counting measures, which are integer-valued set
functions. That is, for subsets of the state space that belong to its �-algebra, a counting
measure assigns integer values to such subsets. Within the context of point processes,
these values are samples of integer-valued random variables. The probability distri-
bution of a point process is completely determined by the 2nite-dimensional or joint
probabilities of these random variables. A counting measure thus counts the number of
‘points’ or ‘events’ in subsets of the state space, which are sampled according to the
2nite-dimensional distributions of a point process.
Point processes are used to describe a broad range of physical, biological and

environmental phenomena. A phenomenon, or some of its characteristics, can often
be represented as a number of events, which are mapped as points in a two- or
three-dimensional space and/or time. A rich class of point process models is formed by
the Gibbs point processes, which in statistical physics are used to describe the potential
energy of a collection of particles [6]. A point process can, for example, also be used
to model the distribution of trees in a forest. A point then represents the location of a
tree, which is ‘marked’ by the diameter of a tree. Another example is the location of
bird nests of one or more di5erent species.
The structure of grains and pores in a sedimentary body, and the location, size, and

orientation of oil and gas reservoirs in the subsurface are other examples of spatial
applications of point processes [8]. In the latter case, the time-dimension could be
included in the state space to describe the actual geological processes that contributed
to the formation of sedimentary bodies. One could then use a point process as a
model for the formation of deposits in a ;uvial system, where the sedimentation starts
from a source area that develops into a system of streams that together create an
alluvial fan. Every stream may branch into new streams that lay down new deposits,
which, however, may erode older ones. Processes of sedimentation and erosion have
similarities with the cascading structure of memory processes, which further motivates
the use of point processes to describe such processes.
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Fig. 1. (a) Storage systems for memories at di5erent time scales, with feedforward induction between and
decline within stores. (b) Abstract representation used in the Memory Chain Model.

A recurring concept in memory psychology is the distinction between di5erent types
of memories, such as iconic or echoic memory, working memory, and long-term mem-
ory. When some kind of information is presented to a subject it will be encoded if
it passes through the sensory systems (e.g., by paying attention to the information).
At a later stage, neurons will 2re in a part of the brain that holds a working memory
representation of the information for a few seconds to minutes [9,10]. Memory repre-
sentations held by such neural groups rapidly decay, but these can be ‘salvaged’ by
a series of induction processes that lead to stronger representations in neural systems
such as the hippocampus and the neocortex (Fig. 1). From a neurobiological point of
view, these processes can be viewed as a cascade of induction and decline processes
that take place at di5erent time scales [11].
Point processes have already been used to describe time-series of 2ring neurons

[12]. The variable of interest in the Memory Chain Model is the number of memory
representations (‘critical features’ of some learned item) in time-intervals, so that the
real line is the state space of the model. The point processes of the Memory Chain
Model have an onset that coincides with the time of exposure to an item that will
be memorised, for instance, the time at which learning is initiated or, in the present
setting, the broadcast time of an interview that contains the target item. A point process
therefore has no points, with probability 1, at times before the onset. At the end of
item exposure, the intensity of the point process has some value �1, which is equal to
the mean number of memory representations per time-unit. This parameter is called the
initial encoding of a memory. Forgetting usually takes place after item exposure, which
in our model is described as a point process with intensity function r(t)=�1r̃(t), where
t denotes the time since item exposure and r̃ is a function that may both describe a
weakening (r̃(t)¡ 1) and a strengthening (r̃(t)¿ 1) of the initial encoding.
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The decline function r̃ describes the storage of a memory after its initial encoding.
The shape of this function is determined by the number and linking of memory struc-
tures, which we call stores. A neurobiologically motivated assumption of our model is
that these memory stores are linked in a feedforward manner (Fig. 1).
The initial encoding takes place in the 2rst store of the chain where memory

representations occur in time according to a point process with intensity function
r(t) = �1 exp(−a1t). We assume exponential decline functions for every store, where
ai denotes the decline rate parameter for memory representations in store i. Store i
may induce a point process in the next store i+1 of the chain. The intensity function
of store i + 1 then arises as a convolution of the intensity function of store i and the
decline function of store i + 1. A further characteristic of the stores is that these are
ordered such that ai ¿ai+1 for all stores i. This means that memory representations
formed in higher-order stores have increasing expected lifetimes, which agrees with the
concept of consolidation of short-term memories into longer-term representations.
When retrieval is attempted (e.g., at a test for recall), a cue will be used to access the

target item stored. A subspace of the brain will be searched for memory representations,
the size of which denotes the e5ectiveness of a retrieval cue. If cue e5ectiveness, which
we denote by q, does not depend on time t, then the intensity function at retrieval is a
thinned version of r, namely, �1r̃(t)q, where 06 q6 1. The initial encoding and cue
e5ectiveness act as a single parameter when these are not a5ected separately. We will
continue to write �1 for �1q.
The Memory Chain Model has been applied to a broad range of memory and reten-

tion data, including learning and forgetting curves for normal subjects, data of di5erent
types of amnesia, and data on the proven recall of advertisements [3,4,13,14]. The
model has been used to derive and 2t di5erent retention functions to these data, such
as the probability of recall, measures for recognition memory, and probability distribu-
tions for ages of autobiographical memories. Retention is determined by the presence
of memory representations aggregated over all the stores, so that we merely have to
consider the intensity function of the sum of the point processes over all the stores.
In the next section we will use the intensity function of a single-store model to

derive long-term reaction time distributions, which will be 2tted to the Internet hit
time data presented in the fourth section.

3. Hit time distributions

The derivation of reaction time distributions can be considered as a classical applica-
tion of point process theory. Such distributions can be obtained by calculating the 4rst
contact distribution function, which is the distribution of the distance from an arbitrar-
ily 2xed point to the nearest point of the process [6]. In terms of the Memory Chain
Model, this can be interpreted as the distribution of the time between item exposure,
which we will 2x at time zero, and the occurrence of the 2rst memory representation
that allows retrieval of a memory, thereby permitting a subject to take action. Let us
denote the reaction or hit time for the Memory Chain Model by T , its distribution
function by F and the underlying point process by M . The distribution function F



546 A.G. Chessa, J.M.J. Murre / Physica A 333 (2004) 541–552

follows from the relation F(t) = P{T6 t}= P{M ([0; t])¿ 1 |M ([0;∞))¿ 1}, where
the random variable M ([0; t]), which denotes the number of memory representations
in the time interval [0; t], has expectation EM ([0; t]) =

∫ t
0 r(z) dz. Notice that the con-

ditioning on the event {M ([0;∞])¿ 1} is necessary in order to obtain F , since this
event does not have probability 1 for the point process M . We assume that M is a
Poisson point process, so that the random variable M ([0; t]) has a Poisson distribu-
tion. Another important property of Poisson processes is the independent scattering
property, which means that numbers of points in disjoint subsets of the state space
are independent. By working out the conditional probability that determines F , and by
making use of the aforementioned properties of the Poisson process, it follows that

F(t) =
1− exp(− ∫ t

0 r(x) dx)

1− exp(− ∫∞
0 r(x) dx)

:

For a single-store point process with intensity function �1 exp(−a1t) we obtain, for
decline rate parameters a1¿ 0,

F(t) =
1− exp(−(�1=a1)(1− e−a1t))

1− exp(−�1=a1) : (1)

If a1=0, the single-store point process is a homogeneous Poisson process with intensity
�1, which gives rise to the exponential distribution function

F(t) = 1− exp(−�1t) : (2)

The form of the distribution function F depends on two aspects: (1) the number
of memory stores, and (2) the number of memory representations that is required to
retrieve and recall the memory of an item. In order to derive F we made use of 2rst
contact distributions, which implies that we implicitly used the psychological assump-
tion that one memory representation will su=ce to recall the full item. We used this
recall threshold as a reference value in each of our model 2ts to experimental data
[3,4]. Departures from this base value were needed in a limited number of studies,
where recall thresholds greater than 1 seem to be related to the complexity of the
structure of items to be memorised. During initial learning, new items are then mem-
orised as distinct ‘chunks’ of information, which are gradually assembled into a single
chunk after repeated learning of the same item (leading to a series of recall thresholds
that decrease to 1). The item that had to be memorised in the present study is the
name of our web site, which has a simple structure, so that we set the recall threshold
equal to 1.

4. Fits to Internet hit time data

A 3-min radio interview with the second author (JM) that was broadcast nation-wide
mentioned our URL during primetime (4:50 p.m.). This allowed us to record in the
subsequent days a large, isolated peak in hits to our web site (Fig. 2). Our site is
located at the easy-to-remember address (for the Dutch) ‘memory.uva.nl’ and contains
a Daily News Memory Test that has been completed spontaneously nearly 20,000 times
in the past two years. Participants are sent an electronic mail message upon completion
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Fig. 2. Daily Internet hits before and after the radio interview (2xed at time zero). The number of hits after
the radio interview (dots) is 2tted by expression (3) (solid line) and by the power law function used in
Johansen [1] (dashed line).

in which they are invited to bring our site to the attention of their acquaintances. The
observed number of daily hits consists of two components: the hits from listeners and
their social contacts, and hits coming from visitors to our web site who did not hear
about the interview. The latter group of subjects give rise to a ‘base rate process’,
which appears in Fig. 2 as the number of daily hits plotted before the interview. The
number of hits after the interview tends to stabilise around this base rate with increasing
time lags. We recorded the number of daily hits for 21 days until the day the interview
was broadcast and for 28 days after the interview.
Expressions for the expected number of daily hits can be derived as follows from

the hit time distributions (1) and (2). The number of daily hits in the base rate process
can be thought of as a homogeneous point process with (constant) intensity � (per
day), which is equal to the expected number of daily base rate hits. We also introduce
a parameter n for the total number of hits from original listeners after the interview.
The expected cumulative number of daily hits in the time interval [0; t], where time 0
2xes the time of broadcast, is equal to

�t + nF(t) : (3)

This expression contains four parameters for hit time distribution (1) and three for
distribution function (2): the base rate �, the initial encoding �1, the decline rate
parameter a1 of the single-store Memory Chain Model (which appears only in (1)),
and the parameter n.
We estimated the base rate � from the number of daily hits before the interview,

which is obtained by dividing the total number of hits over this period by 21 days,
which gives an estimate of 2622.81. The total number of hits reported during the 2rst
28 days after the interview is 155,216, so that the parameter n must satisfy the equation
nF(28)=155; 216−28�. This implies that we are left with one or two free parameters
to 2t the shape of the curve representing the number of hits after the radio interview.
Fig. 2 shows an excellent 2t of expression (3) to these data, with exponential cognitive
hit time distribution function F given by (2), which corresponds to a single-store point
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Fig. 3. Fits of expression (3) (solid line) and of the power law function used in Johansen [1] to Johansen’s
[2] download rate data, following the appearance of a web-interview. The data (dots) and the 2tted model
values denote download rates summed over three successive days.

process with zero decline rate and with initial encoding �1 = 0:414. The 2t does not
improve for a hit time distribution function with nonzero decline rate.
We also used expression (3) to 2t the download rate data of Johansen [2]. The 2tted

expression, which is shown in Fig. 3, has the same analytical form as the function
2tted in Fig. 2. The 2t indicates a long-term, asymptotic daily base rate of � = 18:91
downloads, an initial encoding �1 = 0:181, zero decline rate a1, and n=1589. As was
the case with our data, a model with nonzero decline rate does not improve the 2t. An
interesting 2nding that emerges from the above results is that, apart from the di5erence
in the base rates between the 2ts in Figs. 2 and 3, the only parameter that controls
the shape of the two 2tted functions is the initial encoding. The value of �1 is higher
in the 2t of Fig. 2, which may suggest either that our URL (www.memory.uva.nl)
was better encoded than the URL of Johansen’s [2] study (www.wallstreetuncut.com),
for instance, because of a longer exposure to the URL, or that cues used to retrieve
encoded memory representations were more e5ective for our URL. We did not 2t
our model to the data of the 2rst study by Johansen [1], because this data set has
considerable variability.
The results obtained with our model for the two 2tted data sets invite us to make

a comparison with Johansen’s proposed power law and logarithmic function [1,2]. In
particular, we are able to use the Internet hit data to investigate whether the cognitive
processes underlying the hit rates are better matched by the assumptions of the Memory
Chain Model, a power law or logarithmic function. The expected cumulative hit rates
for these three models are given by �t + n(1 − exp(−�1t)); �t + nt1−b and c + �t +
n ln(t + 1), respectively. Each of these functions has three parameters, so that a fair
comparison can be made. The power law 2tted to our hit data is plotted as a dashed
curve in Fig. 2. (The logarithmic function gave a similar 2t, and is not shown.) The 2t
of the function that follows from our single-store Memory Chain Model is considerably
better than the power law 2t; the sum of squared di5erences for our model is about six
times lower. The same result holds for the 2ts to Johansen’s [2] data. This con2rms

http://www.memory.uva.nl
http://www.wallstreetuncut.com
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one of the important 2ndings in our previous studies, where the Memory Chain Model
was found to be superior to frequently used functions, such as the power law and
logarithmic functions, in practically all 2ts to memory retention data [3,4]. In Figs. 2
and 3 it can be seen that the power law fails to give a satisfactory 2t to the data for
the smaller time lags; it declines too rapidly in comparison with the behaviour shown
by the data. This characteristic was also observed in many 2tting studies on memory
and retention in our previously cited papers.

5. Hit times for a socio-cognitive model

In a more general setting, hits may be obtained both from subjects who were di-
rectly exposed to an item and from their acquaintances, who constitute a network of
social contacts. In order to model hit times in such situations, we assume that publi-
cised information (i.e., our URL) ;ows through a network that encompasses 2rst the
neurobiological processes of memory in the original listeners. If the information and
intention to pass it on are still available, this may also give rise to the activation of a
network of social contacts.
In this section we propose an extended model for the expected number of hits

described by (3), with the additional contribution of hits from persons belonging to a
social network of contacts, who may receive messages from the original recipients. We
consider hits from social contacts as a nonhomogeneous point process with intensity
function �(t − �)me−�(t−�), where t¿ � and �; m; �¿ 0, which is induced by a hit
from an original recipient at time �. The parameter � controls the number of messages
sent by an original recipient to his acquaintances and the willingness of social contacts
to visit a website, � controls the rate at which hits from social contacts decline in
time, while m is a measure for the degree of connectivity of a social network. The
intensity function of the point process describes di5erent kinds of hit time behaviour.
The number of daily hits may strictly increase, strictly decrease, remain constant at
value �, or reach a maximum at time m=�, for �¿ 0.
The expected cumulative number of ‘social hits’ S(t) in a time-interval [0; t] induced

by one original recipient follows from the expression

S(t) =
∫ t

0

∫ t

�
�(z − �)me−�(z−�)f(�) dz d� ; (4)

where f is the probability density function of the cognitive hit time distribution function
F given by (1) or (2). Expression (4) can be calculated analytically for integer values
of m and exponential density f. A full analytical account of this function requires a
separate treatment of di5erent special cases of S, of which we will only discuss the
function that resulted as the best 2t to our data. We 2tted the expected cumulative
number of hits that satis2es the formal expression

�t + n(F(t) + S(t)) : (5)

The model with an extended social component gives a better 2t to our data than the
model that only contains the base rate and the reaction time distribution derived from
the Memory Chain Model. Function (5) gives the best 2t with parameter m equal to
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Fig. 4. Fit of expression (5) (solid line), with parameters �1 = 0:479; a1 = 0; n = 27000; � = 7:97;
m = 0; � = 3:93; � = 2622:81, to the daily Internet hits of Fig. 2 (dots).

zero, that is, for a point process of hits from social contacts that has intensity function
�e−�(t−�), for a given hit time � from an original recipient. Fig. 4 shows the 2t of
expression (5) with this intensity function to our data, which is given by

�t + n(1− e−�1t) + n
�
�
(1− e−�t)− n �

�1 − � (e
−�1t − e−�t) : (6)

The parameter values of the 2t (�=7:97; �=3:93) suggest a large transfer of messages
from original recipients to acquaintances, who respond quickly but are less willing
to transfer information on our URL among their acquaintances. The 2tted function
improves the sum of squared di5erences between model and data by 20% with respect
to function (3) shown in Fig. 2. The largest improvement is obtained in the 2ts to
the number of hits on the 2rst two days after the radio interview. The decrease in the
expected number of hits on the second day is delayed in comparison with the function
in Fig. 2 because of the transfer of messages from the original recipients.
Function (5) did not improve the 2t for Johansen’s data, which suggests that

Johansen’s download rates are merely the result of responses from a cognitive pro-
cess that applies to the original recipients.

6. Concluding remarks

Following the two studies by Johansen [1,2], we collected similar Internet hit data,
but with much larger sample sizes. We 2tted these data with our Memory Chain Model
to hits induced by cognitive processes among original listeners, and with a point process
for hits from a network of social contacts. The result was a more explicit description
of the processes underlying Internet hits, which proved to give much better 2ts to our
data set and also to the data set described in Johansen [2] than the power law and
the logarithmic function applied in the two studies by Johansen, for the same number
of parameters in Figs. 2 and 3. Our data show evidence for transfer of information
from the original recipients of the information on our URL (Fig. 4), while the data
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in Johansen [2] suggest that hits from a social network are negligible. A reason for
this di5erence may be that our participants receive e-mail messages that invite them
to notify friends.
It is also important to note that the two data sets could be 2tted by the same ex-

pression for the expected number of hits per day, in which only the expected number
�1 of encoded memory representations among the original listeners (combined with
cue e5ectiveness at retrieval), the base rate � and the transfer rate � are varied over
the two di5erent data sets. The base rates are di5erent because we are dealing with
di5erent web sites. The encoding-retrieval and transfer values are di5erent because the
two web sites have been visited by di5erent persons. Encoding depends on learning
speed, time, interest and other factors that may vary among di5erent subjects. Alter-
natively, the initial encoding may be the same, but the retrieval processes may have
been characterised by cues with a di5erent e5ectiveness for the two data sets.
The construction of a valid model for some form of response after an exposure to

a target item is very important in di5erent situations. Johansen [2] already mentioned
the implications for the modelling of social systems such as 2nancial markets. Other
situations, in which both a cognitive and a social component are represented, are, for
instance, the e5ect of advertising commercials on consumer buying behaviour. In this
example, a hit time would represent the time at which a consumer bought a certain
product. Though a single exposure has considerable scienti2c merit, in most advertising
campaigns a large number of media exposures are distributed in time. The response
to a commercial then is the result of a superposition of single exposures. In previous
work, we extended and successfully applied the Memory Chain Model to situations
for describing the learning and forgetting of commercials during and after repeated
exposures to the same commercial [13,14]. This model allows maximisation of the
e5ectiveness of a campaign by optimising the distribution of media exposures in time.
The same model would also be useful, for example, in situations with hits reported
after di5erent media publications that contain a URL, where the times of publication
are chosen in such a way that the expected number of hits on a certain day or time
interval is maximised.

Acknowledgements

This research was supported by NWO, the Netherlands Society for Scienti2c
Research. We are very grateful to Anders Johansen for providing us his paper down-
load data sets, to Eric Maryniak for organising the Internet statistics and to Eric Postma
for pointing out this research 2eld.

References

[1] A. Johansen, D. Sornette, Physica A 276 (2000) 338.
[2] A. Johansen, Physica A 296 (2001) 539.
[3] A.G.Chessa, J.M.J.Murre,Amodel of learning and forgetting: I. The forgetting curve, http://www.neuromod.

org/sta5/murre/drafts.

http://www.neuromod.org/staff/murre/drafts
http://www.neuromod.org/staff/murre/drafts


552 A.G. Chessa, J.M.J. Murre / Physica A 333 (2004) 541–552

[4] J.M.J.Murre, A.G. Chessa, Amodel of learning and forgetting: II. The learning curve, http://www.neuromod.
org/sta5/murre/drafts.

[5] D.J. Daley, D. Vere-Jones, An Introduction to the Theory of Point Processes, Springer, New York,
1988.

[6] D. Stoyan, W.S. Kendall, J. Mecke, Stochastic Geometry and its Applications, Wiley, New York/
Akademie Verlag, Berlin, 1987.

[7] D.C. Rubin, A.E. Wenzel, Psychol. Rev. 103 (1996) 734.
[8] A.G. Chessa, Conditional Simulation of Spatial Stochastic Models for Reservoir Heterogeneity, Delft

University Press, Delft, the Netherlands, 1995.
[9] P.S. Goldman-Rakic, Sci. Am. 267 (1992) 111.
[10] P.S. Goldman-Rakic, Neuron 14 (1995) 477.
[11] J.L. McGaugh, Science 287 (2000) 248.
[12] M. Abeles, Corticonics, Cambridge University Press, Cambridge, 1991.
[13] A.G. Chessa, J.M.J. Murre, Admap 36 (2001) 37.
[14] J.M.J. Murre, A.G. Chessa, in: G. Bartels, W. Nelissen (Eds.), Marketing for Sustainability—Towards

Transactional Policy-Making, IOS Press, Amsterdam, The Netherlands, 2002.

http://www.neuromod.org/staff/murre/drafts
http://www.neuromod.org/staff/murre/drafts

	A memory model for internet hits aftermedia exposure
	Introduction
	The Memory Chain Model
	Hit time distributions
	Fits to Internet hit time data
	Hit times for a socio-cognitive model
	Concluding remarks
	Acknowledgements
	References


